

Project

“Server Load Balancing”

By: Yogendra Sao(200905041)

M.Tech(CSE), 3rd Sem.

Project Guide: Mr. Saurabh Barajatiya

 Brief Introduction:

Load Balancer distributes workloads evenly across two or more servers. The project is about

configuring load balancing software for various scenarios, and tuning various parameters for better

performance. It uses various scheduling algorithm for processing the request.

 Here I have focused mainly on http load balancing, and used "haproxy" an opensource software

to achieve high availability of web servers. Apart from that I have written a small program of

load_balancer which uses load_average parameters of the backend servers at that time, to schedule the

request.

 Using haproxy:

Step by Step approach:

 Download haproxy from http://haproxy.1wt.eu/

 Extract the file haproxy-1.4.8.tar.gz

 Compiling haproxy

 cd ~/IIIT/project/haproxy-1.4.8

 make clean

 make TARGET=linux26 ARCH=i686

 Installing haproxy

 make install

 If /usr/local/bin is installation directory then install manually-

 install -d /usr/local/bin

 install haproxy /usr/local/bin

 Change web server’s port 80 (*optional), if haproxy and one of backend server resides in the same

machine, then change port no. of apache web server other than 80, since haproxy will use this port.

 cp /etc/httpd/conf/httpd.conf /etc/httpd/conf/httpd.conf.bak

Change "Listen 80" -> "Listen 8000", you will get error(SELinux), to troubleshoot

http://www.appnovation.com/change-apache-port-fedora or use only 80, 443, 488, 8008, 8009,

8443 port numbers. So we change it to "Listen 80" -> "Listen 8008"

 vi /etc/httpd/conf/httpd.conf

 service httpd restart

http://haproxy.1wt.eu/
http://www.appnovation.com/change-apache-port-fedora

 Creating "chroot jail" for security(*optional), "it can be skipped".

 Method 1:

source: http://en.tldp.org/HOWTO/Chroot-BIND-HOWTO-2.html#ss2.1

add the following line to /etc/passwd //200 should be unique in that file

 haproxy:x:200:200:HAProxy:/chroot/haproxy:/bin/false

and a line like this to /etc.group

 haproxy:x:200:

Now run following command

 mkdir -p /var/chroot/haproxy

 cd /var/chroot/haproxy/

 mkdir -p dev etc/haproxydb/slave var/run

 cp -p /etc/haproxy.cfg /var/chroot/haproxy/etc/

 cp -a /home/saurabh/yogendra/project_haproxy/haproxy-1.4.8/*

/var/chroot/haproxy/etc/haproxydb/

 chown -R haproxy:haproxy /var/chroot/haproxy/etc/haproxydb/slave

 chown haproxy:haproxy /var/chroot/haproxy/var/run

 mknod /var/chroot/haproxy/dev/null c 1 3

 mknod /var/chroot/haproxy/dev/random c 1 8

 chmod 666 /var/chroot/haproxy/dev/{null,random}

 cp /etc/localtime /var/chroot/haproxy/etc/

TODO: Logging using chroot, and tightening permission, it is given in the source listed.

 Method 2:

 useradd haproxy

 mkdir /var/chroot/haproxy

 chown haproxy:haproxy /var/chroot/haproxy

 chmod 700 /var/chroot/haproxy

http://en.tldp.org/HOWTO/Chroot-BIND-HOWTO-2.html#ss2.1

 Configure /etc/haproxy.cfg

 vi /etc/haproxy.cfg

#This will be a simple load balancing. The HAProxy server will listen to 1 IP

#and distribute to 2 servers. Here haproxy is running on 10.3.3.221:80.

global

 maxconn 10000 # Total Max Connections.

 log 127.0.0.1 local0

 log 127.0.0.1 local1 notice

 daemon

 nbproc 1 # Number of processes

 user haproxy

 group haproxy

 chroot /var/chroot/haproxy

defaults

 log global

 option tcplog

 mode http #mode tcp

 clitimeout 60000

 srvtimeout 30000

 contimeout 4000

 retries 3

 option redispatch

 option httpclose

listen load_balanced 10.3.3.221:80

 server webserver1 10.3.3.74:80 weight 1 maxconn 5000 check

 server webserver2 10.3.3.232:80 weight 1 maxconn 5000 check

 server webserver3 10.3.3.212:80 weight 1 maxconn 5000 check

Following section provides statistics at http://10.3.3.221:8080/my_stats

listen admin_stats 10.3.3.221:8080

 mode http

 stats uri /my_stats

 stats realm Global\ statistics

 stats auth username:password

 Running haproxy

Initially run haproxy in debug mode(-d), and in Verbose mode(-V) displays messages on output.

 haproxy -f /etc/haproxy.cfg –dV

Browse website and see httpd logs, whether different requests go to different backend servers

or not.

 tail -f /etc/httpd/logs/access_logs

Run it for different configuration files, and try to run it in daemon mode.

 Send and receive logs of haproxy

For logging purpose 2 lines added in haproxy.cfg at global section.

global

 log 127.0.0.1 local0

 log 127.0.0.1 local1 notice

To receive and view logs –

 Edit /etc/sysconfig/syslog

SYSLOGD_OPTIONS=”-m 0 -r”

 Edit /etc/syslog.conf. Add the following:

local0.* /var/log/haproxy.log

local1.* /var/log/haproxy-1.log

 Restart Syslog

 service syslog restart

Note: Initially logs can be seen in /var/log/messages .

 Viewing statistics of load balancer ‘haproxy’

 Add these lines in haproxy.cfg as

listen admin_stats 10.3.3.221:8080

 mode http

 stats uri /my_stats

 stats realm Global\ statistics

 stats auth username:password

 Now View statistics at http://10.3.3.221:8080/my_stats username:password

 Hot reconfiguration

It is used to reload configuration file without closing existing sessions. Use '-st' and '-sf' options for

soft stop, like:-

 haproxy -f /etc/haproxy.cfg -sf 15623

Where 15623 is process id of haproxy running at present.

Or more generalized way could be something like-

 haproxy -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)

 Maintaining Sessions

 Default scheduling algorithm was static roundrobin, so requests from same user went to
different backend servers, and hence failed to maintain session.

 "balance source" line added to config. file, that means use user's IP(source) to schedule
requests, so request from same user went to same backend server, and website was working
fine with sessions.

 Now if a backend server fails, then the session with user is lost, hence he has to re -login or re-
stablish the session.

 Try to improve client-server binding by using both source IP and cookie :
listen load_balanced 10.3.3.221:80

balance source # Use user ip to send to same server

cookie SERVERID #Enable cookie-based persistence in a backend.

 server webserver1 10.3.3.74:80 cookie server01 weight 1 maxconn

5000 check

 server webserver2 10.3.3.232:80 cookie server02 weight 1 maxconn

5000 check

 server webserver3 10.3.3.212:80 cookie server03 weight 1 maxconn

5000 check

 Now if a server goes down, then session is maintained by cookie, by redispatching the
connection to other active server.

 Some keywords of configuration file:

o daemon – Run haproxy in daemon mode

o nbproc – No. of processes, default is 1, if a dual core machine is used then it can be set

to 2.

o mode – can be http for web servers and tcp for any other type of servers.

o clitimeout – timeout for client in milliseconds.

o servtimeout- timeout for server in milliseconds, should be less than clitimeout.

o contimeout – Connection timeout in milliseconds.

o retries – No. of retries when a connection fails.

o option redispatch – The client provided a cookie designating a server which was DOWN,

so either the 'persist' option was used and the client was sent to this server, or it was

not set and the client was redispatched to another server.

o option httpclose - Some HTTP servers do not necessarily close the connections when

they receive the "Connection: close" set by "option httpclose", and if the client does not

close either, then the connection remains open till the timeout expires. This causes high

number of simultaneous connections on the servers and shows high global session times

in the logs.

o noepoll- Disables the use of the "epoll" event polling system on Linux.

o nosepoll- Disables the use of the "speculative epoll" event polling system on Linux.

o nosplice - Disables the use of kernel tcp splicing between sockets on Linux.

 Features:

1. Various algorithms can be used for scheduling based on requirements.
2. It can detect automatically if any backend server is down.
3. Statistics of haproxy can be seen in a browser(user friendly).

 Further works:

1. Receive logs at remote machine.
2. Make it completely secure using chroot.
3. Test it in different realworld environment.
4. Session management of users and use of https.
5. Use it for load balancing on other servers like SMTP, VNC, ICA, TSE etc.

 Using load_balancer:

Step by step approach-

 Compile it using Makefile

 cd load_balancer

 make

 Run load_client in each of the backend servers

 ./load_client

 Run load_balancer in the main Load balancer server

 ./load_balancer <list_of_backend_servers_file>

list_of_backend_servers_file(load_balancer.conf) file format-

 10.3.3.74

10.3.3.232

10.3.3.212

 Working of load_balancer:

1. load_balancer asks clients to send their load_average statistics
2. load_client executes command "uptime" and sends last three parameters of it to the server,

which are load before 1, 5 and 15 minutes on that system respectively.
3. load_balancer collects these information and sorts them according to load in increasing order,

and keeps updating it at regular interval.
4. Whenever a user connects for accessing web, it forwards this request to the first server which

has least load at that time.
5. Hot reconfiguration without using restarting.

 Limitations:

1. load_client and web service both need to be run on backend server.
2. It cannot schedule requests based on various parameters which are present in request header,

like user ip, url etc.
3. Reads each time from the file, list of server IPs, to update load statistics of servers, so if file is

deleted, then it will throw error- file is missing.
4. Not completely tested.

Similar type of software are available like Apache web server’s “mod_proxy_balancer" extension

and the "Pound" reverse proxy and load balancer.

 References:

1. http://haproxy.1wt.eu/download/1.4/doc/configuration.txt

2. haproxy-en.txt

3. man haproxy , man pages of haproxy

4. Readme file of haproxy

5. http://www.lastengine.com/99/installing-haproxy-load-balancing-for-

http-and-https/

6. http://www.appnovation.com/change-apache-port-fedora

7. http://en.tldp.org/HOWTO/Chroot-BIND-HOWTO-2.html#ss2.1

http://haproxy.1wt.eu/download/1.4/doc/configuration.txt
http://www.lastengine.com/99/installing-haproxy-load-balancing-for-http-and-https/
http://www.lastengine.com/99/installing-haproxy-load-balancing-for-http-and-https/
http://www.appnovation.com/change-apache-port-fedora
http://en.tldp.org/HOWTO/Chroot-BIND-HOWTO-2.html#ss2.1

