Networking of Xen VMs

0.1 Basic network operations
0.1.1 Listing current networks

We can use command
virsh net-list --all

to see various networks created for virtualization.

0.1.2 Listing definition of defined networks

We can use command
virsh net-dumpxml default

to see configuration of network named ‘default’, that comes predefined with
libvirt and xen.
You may see output like:

<network>
<name>default</name>
<uuid>d99113fb-948a-4ec0-b763-8de5a3c8023b</uuid>
<forward mode=’nat’/>
<bridge name=’virbr0’ stp=’on’ forwardDelay=’0’ />
<ip address=’192.168.122.1° netmask=’255.255.255.0">
<dhcp>
<range start=’192.168.122.2° end=’192.168.122.254° />
</dhcp>
</ip>
</network>

where:
name — is name of network.

uuid — is unique identifier for this network. Not two networks can have
same uuid.

<forward mode=‘nat’> — is used to indicate that packets from this net-
work should be forwarded to local network using NAT. By default NAT
will automatically put base machines IP on outgoing packets.

bridge — is used to define name of bridge to be created when this network
is started or bridge to be deleted when network is stopped. Hence we
do not use ‘bretl’” to create/delete bridges when we use virsh commands
to manage networks. virsh handles bridge creation/deletion for us.

stp=‘on’ — is used to enable Spanning-Tree-Protocol on bridge. This can
be useful if we are going to create complex networks with multiple
bridges and there is possibility of having network loop among virtual
bridges.

9

forwardDelay="0" — is used to indicate that bridge should forward pack-
ets without introducing any artificial delay.

ip — tag is used to define IP address of the bridge. Bridge IP address also
becomes IP address of base. This IP address can be used to indicate
which IP range which will get used on this network. We can have ‘dhcp’
sub-tag and ‘range’ sub-sub tag inside IP tag if we want to assign IP
addresses using DHCP on this network. The range of IPs to be assigned
by DHCP can be defined in range tag.

0.1.3 Stopping running network

We can stop running network using

virsh net-destroy default

0.1.4 Undefining already defined network
We can undefine network using

virsh net-undefine default

0.1.5 Configuration of default network

Configuration of default network which is present by default is present in
file ‘/usr/share/libvirt/networks/default.xml’. Hence if we undefine
‘default’ network during lab and want it back we can use this XML file to
re-define network with name default. The command which can be used is

virsh net-define default.xml
Note that:

1. Network will not get started when it is defined. We need to explicity
start network after defining it using ‘virsh net-start default.xml’

2. If we want to start network as soon as it is defined we can use ‘virsh
net-create default.xml’ in place of ‘virsh net-define default.xml’
to ensure that network gets started along with getting defined.

Most virsh commands have create, start, destroy, define and undefine
options where create would combine both define and start operations.

3. Contents of default.xml are:

<network>
<name>default</name>
<bridge name="virbr0" />
<forward/>
<ip address="192.168.122.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.122.2" end="192.168.122.254" />
</dhcp>
</ip>
</network>

Hence we can see that:

(a) ‘uuid’ gets generated for us if we do not mention one in XML file.
(b) ‘forward’ gets created with forward mode=‘nat’

(c) Bridge gets created with stp=‘on’ and forwardDelay="‘0’

0.1.6 Creating and starting custom network

1. We can create and start various custom networks like

<network>

<name>host-only</name>
<bridge name="virbril" />

<ip address="192.168.123.1" netmask="255.255.255.0">
<dhcp>

<range start="192.168.123.2" end="192.168.123.254" />

</dhcp>

</ip>

</network>

This network would be a host only network and no packets from this
network would go outside current host.

2. We can also create and start custom network like

<network>
<name>natted</name>
<bridge name="virbr2" />
<forward/>
<ip address="192.168.124.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.124.2" end="192.168.124.254" />
</dhcp>
</ip>
</network>

This network would be a natted network. Outside machines will not
be able to initiate connection to VM in this network. But VMs in this
network would be able to contact all machines accessible by host using
NAT.

0.2 TUnderstaing firewall implications of starting/stopping
networks

To enable/disable NAT of packets from virtual network, xen uses default ipt-
ables firewall that comes with CentOS. Hence it is important to understand
changes that happen in firewall rules when we start/stop a virtual network.
Especially what changes in firewall ensure that network is host-only and what
changes make it a natted network should be clear.

To understand all this first change default iptables configuration file
‘/etc/sysconfig/iptables’ so that it has contents as shown below:

xfilter

: INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -i lo -j ACCEPT

—-A INPUT -p icmp --icmp-type any -j ACCEPT

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp —-dport 22 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
—-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

Then use ‘service iptables restart’ command so that old rules get flushed
and firewall uses the configuration mentioned in file ‘/etc/sysconfig/iptables’.
You can use commands ‘iptables -L -n’ to list firewall rules in filter table.
There are also three other tables ‘nat’, ‘mangle’ and ‘raw’. For purpose of
this lab only ‘filter’ and ‘nat’ tables are important. To see rules in nat table
we can use ‘iptables -t nat -L -n’ command.

In case we want to see configuration of start-up file that would lead to
same state of firewall as it is now we can use ‘iptables-save’ command.
This command wont save any configuration, it justs lists current configura-
tion on screen in configuration file format. We can use ‘iptables-save >
/etc/sysconfig/iptables’ if we really want to make current firewall con-
figuration default start-up firewall configuratin.

Before trying each of below mentioned sections, first destory all currently
defined networks so that changes caused when we create a virtual network are
removed. Then list firewall rules using command ‘iptables-save’ and ensure
that you see something like:

Generated by iptables-save v1.3.5 on Wed Sep 22 20:27:07 2010
*nat

:PREROUTING ACCEPT [437:78100]

: POSTROUTING ACCEPT [110:7239]

:OUTPUT ACCEPT [111:7621]

COMMIT

Completed on Wed Sep 22 20:27:07 2010

Generated by iptables-save v1.3.5 on Wed Sep 22 20:27:07 2010
xfilter

: INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:0UTPUT ACCEPT [2353:139742]

-A INPUT -i lo -j ACCEPT

-A INPUT -p icmp -m icmp --icmp-type any -j ACCEPT

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp —--dport 22 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited

—-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Wed Sep 22 20:27:07 2010

OR

Generated by iptables-save v1.3.5 on Wed Sep 22 20:27:30 2010

xfilter

: INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -i lo -j ACCEPT

-A INPUT -p icmp -m icmp --icmp-type any -j ACCEPT

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp —m state --state NEW -m tcp —--dport 22 -j ACCEPT
—-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

Completed on Wed Sep 22 20:27:30 2010

In case you see something different use ‘virsh net-list --all’ to see
if any networks are still remaining and if all networks are removed, then use
‘service iptables restart’ command.

0.2.1 Understanding changes caused by NATTED network on
firewall configuration

Create a network named natted using configuration listed above in the same
document. Now use ‘iptables-save’ command to see the changes that hap-
pen in firewall rules when we start a natted network. Destroy the natted net-
work using ‘virsh net-destroy natted’ command. Again use ‘iptables-save’
command to verify that all rules that were added in firewall got removed.

0.2.2 Understading changes caused by host-only network on fire-
wall configuration

Create a network named host-only using configuration listed above in the
same document. Now use ‘iptables-save’ command to see the changes
that happen in firewall rules when we start a ‘host-only’ network. Destroy
the ‘host-only’ network using ‘virsh net-destroy host-only’ command.
Again use ‘iptables-save’ command to verify that all rules that were added
in firewall got removed.

0.3 Cloning virtual machines

A sample virtual machine named ‘vml’ has been created on all lab ma-
chines. Use ‘virt-clone --prompt’ to make clones ‘vm2’ and ‘vm3’ from
‘vm1’. Clones save time as we do not have to install complete OS and do
all the configuration which we want repeated between virtual machines. Use

‘vm2.img’ and ‘vm3.img as harddisk for vin2 and vm3 and keep them also
in same folder as ‘vml.img’.

0.4 Various network scenarios of VMs
0.4.1 Completely isolated VM

Use ‘virsh dumpxml vml’ to see ‘vinl’ configuration. Now use command
‘virsh detach-interface vml bridge’ to detach bridge interface. Verify
that interface actually got removed using ‘virsh dumpxml vml’ commmand.
Now start ‘vm1’ using ‘virsh start vml’ command. Connect to ‘vml1’ using
‘virt-viewer vml & and login as root user. Verify using ‘ifconfig -a’
command that there is no ethernet interface available on this VM to contact
outside world. Note that this VM can’t even contact base machine.

Now without powering of VM use ‘virsh attach-interface vml bridge
xenbrQ’ to attach a bridged network interface back to ‘vml’. Edit file
‘/etc/sysconfig/network-scripts/ifcfg-eth0’ and remove line contain-
ing mac address as part of ‘HWADDR’ parameter. Now use ‘service network
restart’ to restart networking. Verify that ‘vm1’ can again connect to out-
side world using bridged networking.

Now without powering of VM use ‘virsh detach-interface vml bridge’
to detach bridge interface. Now use ‘ifconfig -a’ command to again verify
that interface actually got removed from running OS.

0.4.2 VMs connected only to each other and not to host

Define a network named ‘not_even_ host’ using file ‘not_even_ host.xml’
with following contents

<network>
<name>not_even_host</name>
<bridge name="virbr3" />
</network>

Use command ‘virsh net-define not_even host.xml’. Verify using ‘virsh
net-list --all’ that network got defined without any problem. Now use
‘virsh net-start not_even host’ to start this network.

Assuming ‘vm1’ still has no bridged network interface after previous con-
figuration of completely isolated VMs, use command ‘virsh attach-interface
vml bridge virbr3’ to connect ‘vml’ to ‘not_even_host’ network. Use com-
mands ‘virsh detach-interface vm2 bridge’ and ‘virsh attach-interface
vm2 bridge virbr3’to configure ‘vm2’ also to become part of ‘not_even_host’

network. Edit file ‘/etc/sysconfig/network-scripts/ifcfg-eth0’ in both

‘vm1’” and ‘vim2’. In both files remove ‘HWADDR’ line, change to ‘BOOTPROTO=static’,
add line ‘NETMASK=255.255.255.0’, configure IP address as ‘TPADDR=192.168.200.2’
in ‘vim1’ and as ‘TPADDR=192.168.200.3’ in ‘vin2’. Now use ‘service network
restart’ command in both VMs. Ping ‘vm1’ from ‘vm2’ and vice-versa. SSH

‘vml1’ from ‘vm2’ and vice-versa to verify both VMs are properly connected.

Note that by not connected to host the meaning is that VMs cant connect
to host on its IP addresses and hence normal TCP/IP connnections cannot
be established. But since bridge ‘virbr3’ is created on host, host can always
capture packets traversing over this bridge. To understand the point better
use command ‘ping <vm2_ip>’ on ‘vml’ so that its pings to ‘vm2’. Now
on base machine use command ‘tcpdump -vn -i virbr3 icmp’ to capture
ICMP packets that host can receive on ‘virbr3’. You will be able to capture
ping requests from ‘vml’ to ‘vim2’ and ping responses from ‘vm2’ to ‘vm1’
even though both VMs are not connected to host.

For each virtual interface of VM one corresponding virtual interface gets
created on base machine as well. Run ‘ifconfig’ command on base machine
to see how many interfaces are shown when both ‘vim1’ and ‘vim2’ are running
and are also connected to ‘not_even_host’ network. Use command ‘brctl
show’ to see which interface is connected to which bridge. You can also use
command ‘brctl showmacs virbr3’ to see MAC address of virtual inter-
faces of VM1 and VM2 which are connected to this software bridge. You
can verify by running ‘ifconfig’ command in ‘vml’ and ‘vm2’ that mac
addresses shown when we run ‘brctl showmacs virbr3’ are indeed MAC
addresses of ‘vim1’ and ‘vm2’.

Now use command ‘free -m’ to see how much memory is free on base
host after running ‘vm1” and ‘VM2’. If well over 512 MB RAM is free we
can start ‘vm3’ using ‘virsh start vm3’. If less RAM is free then stop both
‘vm1’ and ‘vm2’. Now use command ‘virsh dominfo vml’ to see memory
allocated to ‘vm1’. Now use command like ‘virsh setmaxmem wvml 400000’
to reduce the memory allocated to ‘vm1’. Do same for ‘vm3’. Run command
‘free -m’ and it will still show the same output as before even after reducing
memory. (Why is part of lab queries?) Set RAM for ‘vin3’ also to be around
400MB using ‘virsh setmaxmem vm3 400000’ command. Now start all three
VMs ‘vml’, ‘vm2’ and ‘vim3’.

Take necessary steps so that all three VMs ‘vm1’, ‘vm2’ and ‘vim3’ are con-
nected to ‘not_even_host’ network and have IPs 192.168.200.2, 192.168.200.3
and 192.168.200.4 respectively. Now use ‘brctl’ commands to find interfaces
for each VM. Now that virtual interfaces are named in format ‘vif<p>.<q>’
where ‘p’ is the domain ID of the virtual domain for which the interface is
created. Hence using combination of ‘brctl’ and ‘virsh’ commands you can

exactly identify which interface is for which VM.

Now ping from ‘vml’ to ‘vi2’ and try to capture packets on ‘virbr3’,
VM1 interface, VM2 interface and then VM3 interface. Note that when we
ping from VM1 to VM2 we can capture packets either on ‘virbr3’, on VM1
interface or on VM2 interface but not on VM3 interface. Hence, our software
bridge ‘virbr3’ acts very similar to bridges or switches and avoids sending
packets to VM3 which are not intended for it.

Hence all the packets processed by bridge can be captured at virbr3. If we
are interested in packets as seen/sent by a particular VM then we can capture
packets only on that VMs virtual interface. Note that tcpdump/wireshark
etc. are written for normal PC interface but they can be used on virtual
interfaces as well. Hence even other tools like snort can be used on bridge in-
terface or virtual network interface to detect intrusion and take corresponding
action.

Figure 1: Connectivity diagram when using ‘not_even_host’ network

VM1 - vifl.x

VM2 - vif2.y

not even host - virbr3

VM3 - vif3.z

The vif names are given assuming VM1 has
domain ID 1, VM2 has domain ID2 and VM3

has domain ID 3.

0.4.3 'VMs connected to host using private LAN but not to outside

world

Change VM1, VM2, VM3 configuration so that they are connected to ‘host-
only’ network as described below. Disconnect them from ‘not_even_host’

network.

<network>
<name>host-only</name>
<bridge name="virbrl" />

<ip address="192.168.123.1" netmask="255.255.255.0">

<dhcp>

<range start="192.168.123.2" end="192.168.123.254" />

10

</dhcp>
</ip>
</network>

Restart network on all three VMs so that they get IPs from DHCP. To enable
getting IPs from DHCP you might have to edit file ‘/etc/sysconfig/network-scripts/ifcfg-ethO
in all three hosts and change ‘BOOTPROTO=dhcp’. You should remove/comment
lines that try to supply values for ‘IPADDR’ and ‘NETMASK’ as now these pa-
rameters will be given by DHCP server.

Find IPs of all three VMs and ping from one VM to other two VMs to
ensure they are all able to connect to each other. Run ‘ifconfig’ command
on base machine and you should see IP address 192.168.123.1 assigned to
bridge. Try to ping 192.168.123.1 from all three VMs and all three VMs
from base machine to verify that VMs are all connected to base machine via
‘virbrl” network named ‘host-only’.

Now ping from base machine to VM1 and try to capture packets on
‘virbrl” and then on virtual interfaces of VM1, VM2 and VM3. You should
see ping requests and replied only on ‘virbrl’” and on VM1 virtual interface.
While capturing VM2 or VM3 virtual interfaces you should not see any ping
requests or replies.

Now ping from VM1 to VM2 and capture packets on ‘virbrl’ and then on
virtual interfaces of VM1, VM2 and VM3. You should see ping requests and
replies on ‘virbrl’, on VM1 and VM2 interfaces. Only VM3 virtual interface
will not show any ping requests and responses. Hence there is no interface
where we can capture packets that are meant only for host machine. We can
capture all packets received by bridge on ‘virbrl” which will include packets
for host, but the packets of VM1, VM2 and VM3 will also get included in
capture.

11

Figure 2: Connectivity diagram when using ‘host-only’ network

VM1 - vifl.x VM2 - vif2.y

host-only - virbrl
192.168.123.1/24

)

VM3 - vif3.z

The vif names are given assuming VM1 has
domain ID 1, VM2 has domain ID2 and VM3
has domain ID 3.

0.4.4 VMs connected to host using private LAN and to outside
world using NAT

Create network named natted using

<network>
<name>natted</name>
<bridge name="virbr2" />

<forward/>
<ip address="192.168.124.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.124.2" end="192.168.124.254" />
</dhcp>

12

</ip>
</network>

Disconnect all three VMs from network ‘host-only” and connect them to
network ‘natted’. Now restart network on all three VMs so that they can
take IPs related to new network to which they are connected.

Ping ‘www.google.co.in’” or ‘www.yahoo.com’ from VM1. Now capture
packets on ‘virbr2’, VM1 virtual interface, ‘eth0’ and ‘peth0’. You should
see packets on all the four interfaces. Try to capture packets on VM2, VM3
virtual interface and you should not see any ping requests/replies to/from
google server.

Now ‘ping 10.3.3.1" from your local machine. Capture packets on both
‘eth(0’” and ‘peth0’. You should still see packets on both interface. See below
diagram of how things are connected to understand the above output.

Figure 3: Connectivity diagram when using ‘natted’ network

VM1 - vifl.x VM2 - vif2.y

L

natted - virbr2 é }; Base machine
192.168.124.1/24

VM3 - vif3.z $

Virtual interface
ethO - 10.3.3.x/24
The vif names are given assuming VM1 has ;l\

domain ID 1, VM2 has domain ID2 and VM3
has domain ID 3.

Virtual interface

vif0.0
Outside Physical interface |, Software bridge
(Campus LAN) | peth0 xenbr0

You should understand that for VM in natted network if it has to send
packet to Outside (Campus LAN) then the packet must go to VMs virtual

13

interface, then to ‘virbr2’, then to ‘eth(0’; then to ‘xenbr(’, then to ‘peth0” and
then finally it will leave physical interface of host and go to campus LAN. The
reverse path would also involve so many virtual interfaces, software bridges
and physical interface.

You can use ‘iptables-save’ command verify the iptables rules that
cause host to put its own IP when it receives packets from ‘virbr2’, before it
sends them outside via ‘eth(’.

0.4.5 VDMs directly connected to outside LAN using bridging

Disconnet all three VMs (VM1, VM2 and VM3) from natted network and
connect them to ‘xenbr(’” bridge. Restart network if VMs do not automati-
cally get 10.3.3.0/24 series IP.

‘ping www.google.co.in’ from VMI1. You should be able to capture
these packets on virtual interface of VM1, ‘xenbr()’ and peth(O. But the same
packets should not be visible on ‘vif0.0’, ‘eth0’” or virtual interfaces of other
VM.

Figure 4: Connectivity diagram when using ‘xenbr0’ bridge

Base machine Actual LAN
Virtual interface Physical interface VML - vifl.x
etho - 10.3.3.m peth0 10.3.3.p/24
T L
Virtual interface Software bridge VM2 - vif2.x
Uif0.0 £ xenbro 10.3.3.q/24

The vif names are given assuming VM1 has _
domain ID 1, VM2 has domain ID2 and VM3 VM3 - vif3.X
has domain ID 3. 10.3.3.r/24

14

0.5 Lab queries

1.

When we add a bridge interface to running VM, why do we need edit file
‘/etc/sysconfig/network-scripts/ifcfg-eth0’ before we can start
using the interface?

. Why do we assign static IPs to hosts connected to ‘not_even_host’ net-

work. What is the problem in assigning IPs usind DHCP? What can
be done so that IPs in ‘not_even_host’ network are also assigned using
DHCP?

. If we have VM1 and VM2 running and we use command ‘free -m’

to see available memory we will get output that some X MB RAM
is available for base machine. Now if we poweroff VM1 and VM2 and
even reduce the maximum RAM allocated to both VMs then also ‘free
-m’ command will show that X MB RAM is available for base machine.
Why this X has not increased? How can we increase the amount of
RAM available to base machine if both VM1 and VM2 are configured
to use less RAM then before?

. Try to ping ‘www.google.co.in’” or ‘www.yahoo.com’. Or try to use

‘nslookup www.rediff.com’ on VM1, VM2 or VM3 when they are
connected to host-only network. Is there something wrong with the
output and name ’host-only’? If yes, what is the problem and how can
you prevent it?

. When we use ‘host-only’ or ‘natted’ networks, Is it possible to host a

webserver on VM that can be accessed from Outside (that is campus
LAN)? If yes, how? What are the limitations of the approach that you
have mentioned?

Create a setup where we have VM1 and VM2 such that:
(a) All packets from VM2 go directly to outside network via virtual

interface to ‘xenbr(’ to ‘peth(’

(b) All packets from VM1 which are not for host or other VMs in
same network go to VM2. Then from VM2 these packets should
go to outside network.

Try traceroute from VM1 to ‘www.google.co.in” and you should see
VM2 IP address on the route which verifies that packets from VM1 to
outside world do actually go through VM2.

Mention detailed steps used to achieve the above setup including:

15

(a) Virtual networks that you have created

(b) Number of interfaces on each VM and to which virtual network
they are connected.

(c) Detailed TP address, netmask, etc. network configuration of both
VNMs.

(d) Any special changes done on VM1 or VM2 to make things work.

In case you are not able to achieve the output at least mention what
all you tried, use ‘tcpdump’ to verify till what point packet is reaching
and where it is getting dropped.

. You do not have to try to create the below mentioned setup. Just ex-
plain how it can be created based on learning/experiences from previous
question.

Setup a network with two VMs - VM1 and VM2 where:

(a) All packets of VM2 go to outside network via NAT using base
machines TP address. That is, all packets originating from VM2
first go to VM2’s virtual interface then to virtual bridge IP of base
machine. Then host NATs the packets and puts its on LAN IP
and sends the packets via ‘eth0O’ to ‘vif0.0” to ‘xenbr0’ to ‘peth(’
to outside.

(b) All packets from VM1 which are not for host or other VMs in
same network go to VM2. Then from VM2 these packets go to
outside world in same way as packets originating from VM2 do.

What are the differences in steps required to achieve this in comparison
to steps required to solve previous problem.

. Setup a virtual network of VM1 and VM2 such that:
(a) Both VM1 and VM2 can contact outside world using natted net-

work.

(b) VM1 and VM2 are on different networks and hence belong to
different IP ranges.

Mention how did you achieve the setup. Also mention what is required
to ensure that both VMs VM1 and VM2 can contact each other. Also
mention what is required to ensure that both VMs cant contact each
other.

16

	Basic network operations
	Listing current networks
	Listing definition of defined networks
	Stopping running network
	Undefining already defined network
	Configuration of default network
	Creating and starting custom network

	Understaing firewall implications of starting/stopping networks
	Understanding changes caused by NATTED network on firewall configuration
	Understading changes caused by host-only network on firewall configuration

	Cloning virtual machines
	Various network scenarios of VMs
	Completely isolated VM
	VMs connected only to each other and not to host
	VMs connected to host using private LAN but not to outside world
	VMs connected to host using private LAN and to outside world using NAT
	VMs directly connected to outside LAN using bridging

	Lab queries

