
IPTables

Project Report

Spring 2011

IIIT, Hyderabad

Sankalp Khare (200702039)

Project Overview

This project documents the con�guration and capabilities of the iptables �rewall for Linux systems.
It also discusses some of the advanced features of iptables, and gives su�cient documentation on
how to implement these.

We also describe the �rewall con�g of various servers at IIIT, Hyderabad with suggestions for
optimization and overall improvement.

Contents

1 What is IPTables 2

2 Fundamental Concepts 2
2.1 Chains . 2
2.2 Tables . 3

2.2.1 NAT . 3
2.2.2 Filtering . 3
2.2.3 Mangling . 4

2.3 Packet Flow . 5
2.4 Rules . 5
2.5 Matches . 6
2.6 Targets . 6

3 Con�guring and Managing iptables 6
3.1 Starting and Stopping . 6
3.2 IPTables List Command . 7
3.3 IP Tables Flush Command . 8
3.4 IP Tables Policy Command . 9
3.5 Writing Rules . 9

3.5.1 Leveraging the connection state . 10
3.5.2 Blocking packets from speci�c sources . 10
3.5.3 Accepting packets of desired type . 11
3.5.4 Saving/Restoring Rules to/from �les . 11
3.5.5 Custom (User-de�ned) Chains . 11
3.5.6 Logging . 13
3.5.7 IPTables matches . 14
3.5.8 Implicit matches . 15
3.5.9 Explicit matches . 18

3.6 Some recommended Best Practices for iptables . 22

4 Applications 23

5 Some speci�c techniques and their con�guration 24
5.1 Port Knocking . 24

5.1.1 Implementation using custom-chains . 24
5.1.2 Using the Portknock0 project iptables module 25

5.2 Rate Limiting . 25
5.2.1 Protecting against ping �ood attacks . 26

5.3 Connection Limiting . 26
5.3.1 Limiting the number of SSH connections from a host (in parallel) 26
5.3.2 Bruteforce attack protection . 26

6 iptables at IIIT-H 26
6.1 Suggestions for Optimization and Improvement . 27

6.1.1 Optimizing iptables by creating user-de�ned chains 27
6.1.2 Reordering rules based on counters . 27
6.1.3 Logging and Dropping/Accepting with a single rule 28

7 Man Pages 29

1

1 What is IPTables

iptables, in the most basic sense, is a �rewall program. However, it is one of the most popularly
used �rewall applications worldwide, and ships with most distributions of Linux. The Linux
kernel's network packet processing subsystem is called Net�lter, and iptables is the command
used to con�gure it.

The iptables architecture groups network packet processing rules into tables by function (packet
�ltering, network address translation, and other packet mangling), each of which have chains
(sequences) of processing rules. Rules consist of matches, which are criterions used to determine
which packets the rule will apply to, and targets (that determine what will be done with the
matching packets). iptables operates at OSI Layer 3 (Network). For OSI Layer 2 (Link), there
are other technologies such as ebtables (Ethernet Bridge Tables).

2 Fundamental Concepts

iptables is a stateful �rewall. It supports dynamically loadable modules which supplement its
workings and provide for a host of extra features. Most of the processing of packets in iptables
happens based on chains and tables. The choice of where (table, chain) to put rules is made based
on where in the packet's journey we wish to apply those rules, as will become clear in the rest of
this section.

2.1 Chains

iptables de�nes �ve �hook points� in the kernel's packet processing pathways:

1. PREROUTING

2. INPUT

3. FORWARD

4. POSTROUTING

5. OUTPUT

Built-in chains are attached to these hook points; we can add a sequence of rules for each hook
point. Each rule represents an opportunity to a�ect or monitor packet �ow. Saying �INPUT
chain� means we are referring to the chain attached to the INPUT hook point.

Each of the �hook points�/chains allows us to manipulate packets at a certain point in their journey
through the system :

PREROUTING
Allows us to act on packets just after they arrive, but before any routing decision for them
is made.

INPUT
Allows us to process packets just before they are delivered to a local process.

FORWARD
Allows us to process packets that �ow through our machine treating it as a gateway, i.e.
coming in via one interface and straightaway leaving through another.

POSTROUTING
Allows us to act on packets just before they leave the machine through a network interface.

OUTPUT
Allows us to process packets just after they are generated (by a local process).

2

In addition, we can create our own custom chains, for better organization of rules.

A chain's policy determines the fate of packets that reach the end of the chain without otherwise
being sent to a speci�c target. Only the built-in targets ACCEPT and DROP can be used as the
policy for a built-in chain, and the default is ACCEPT. All user-de�ned chains have an implicit
policy of RETURN that cannot be changed.

It is for this reason that if we want a more complicated policy for a built-in chain or a policy other
than RETURN for a user-de�ned chain, we add a rule to the end of the chain that matches all
packets, with a target of our liking.

2.2 Tables

iptables comes with three built-in tables: �lter, mangle, and nat. Each is precon�gured with
chains corresponding to one or more of the hook points described earlier.

Just as chains represent the hook-points in the iptables work�ow, tables represent the type of
processing (conceptually) that can occur. The following are the possible legal combinations, and
the corresponding tables.

2.2.1 NAT

NAT-ing is the process of modifying the IP Headers, in particular the to/from addresses, of a
packet in transit through the machine. A machine performing NAT acts like a routing device.

The NAT Table is used with connection tracking to redirect connections for network address
translation; typically based on source or destination addresses.

Figure 1: NAT: packet �ow and hook points

Figure 1 shows how packets go through the system for Network Address Translation (NAT). It
becomes clear that the NAT Table should contain 3 chains � PREROUTING, POSTROUTING
and OUTPUT.

2.2.2 Filtering

Filtering is the most widely used feature of iptables. It is used to set policies for the type of tra�c
allowed into, through, and out of the computer. Unless we refer to a di�erent table explicitly,
iptables operates on chains within this table by default. Its built-in chains are: FORWARD,
INPUT, and OUTPUT.

3

Figure 2: Filtering: packet �ow and hook points

Figure 2 shows the (conceptual) �ow of packets when they are �ltered by the machine. The chains
(in the grey boxes) are the chains that become part of the �lter table.

2.2.3 Mangling

Figure 3: Mangling: packet �ow and hook points

Mangling is used in specialized packet alteration, such as stripping o� IP options (as with the
IPV4OPTSSTRIP target extension). Its built-in chains are: FORWARD, INPUT, OUTPUT,
POSTROUTING, and PREROUTING.

Figure 3 shows the corresponding �ow for packet mangling. We will not discuss much of mangling
in this document.

Thus, if all the above were to be put into one grand schematic, it would resemble �gure 4

4

Figure 4: IPTables: The grand scheme of things

2.3 Packet Flow

Packets traverse chains, and are presented to their rules one at a time in order. If a packet does
not match the rule's criteria, the packet moves to the next rule in the chain. If a packet reaches
the last rule in the chain and still does not match, the chain's policy (which can also be viewed
as the chain's default target) is applied to it.

2.4 Rules

An iptables rule consists of one or more match criteria that determine which network packets it
a�ects (all match options must be satis�ed for the rule to match a packet) and a target speci�cation
that determines how the network packets will be a�ected. The system maintains packet and byte
counters for every rule. Every time a packet reaches a rule and matches the rule's criteria, the
packet counter is incremented, and the byte counter is increased by the size of the matching packet.

5

Both the match and the target portion of the rule are optional. If there are no match criteria, all
packets are considered to match. If there is no target speci�cation, nothing is done to the packets
(processing proceeds as if the rule did not exist�except that the packet and byte counters are
updated).

2.5 Matches

There are a variety of matches available for use with iptables, although some are available only for
kernels with certain features enabled (usually later versions of kernels). Generic Internet Protocol
(IP) matches (such as protocol, source, or destination address) are applicable to any IP packet.
In addition to the generic matches, iptables includes many specialized matches available through
dynamically loaded extensions (we use the iptables -m or --match option to inform iptables that we
want to use one of these extensions). There is one match extension for dealing with a networking
layer below the IP layer. The mac match extension matches based on Ethernet media access
controller (MAC) addresses.

2.6 Targets

Targets are used to specify the action to take when a rule matches a packet and also to specify
chain policies. Four targets are built into iptables, and extension modules can provide more.

The built in targets are :

ACCEPT
Let the packet through to the next stage of processing. Stop traversing the current chain,
and start at the next stage in the packet �ow.

DROP
Discontinue processing the packet completely. Do not check it against any other rules,
chains, or tables. In case we want to provide some feedback to the sender, we must use the
REJECT target instead.

QUEUE
Send the packet to userspace (i.e. code not in the kernel). The libipq manpage o�ers more
information.

RETURN
From a rule in a user-de�ned chain, discontinue processing this chain, and resume traversing
the calling chain at the rule following the one that had this chain as its target. From a rule
in a built-in chain, discontinue processing the packet and apply the chain's policy to it.

3 Con�guring and Managing iptables

3.1 Starting and Stopping

iptables can be started/stopped using the service command.

Listing 1: Starting and Stopping iptables

1 [root@someserver ~]$ service iptables start
2 [root@someserver ~]$ service iptables stop

Whether or not to invoke it on startup can be set using the chkconfig command.

When iptables is started, the default rule-set is loaded from the contents of the �le
/etc/sysconfig/iptables. This �le should contain a list of iptables rules that we want to

6

add, in the same order. The only di�erence is that while writing them in this �le, we can omit
the iptables pre�x.

Listing 2: Sample /etc/syscon�g/iptables �le

1 # Firewall configuration written by system-config-firewall
2 # Manual customization of this file is not recommended.
3 *filter
4 :INPUT ACCEPT [0:0]
5 :FORWARD ACCEPT [0:0]
6 :OUTPUT ACCEPT [0:0]
7 -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
8 -A INPUT -p icmp -j ACCEPT
9 -A INPUT -i lo -j ACCEPT

10 -A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
11 -A INPUT -j REJECT --reject-with icmp-host-prohibited
12 -A FORWARD -j REJECT --reject-with icmp-host-prohibited
13 COMMIT

In listing 2,

• line 3 means that the subsequent rules are part of the FILTER table.

• lines 4, 5 and 6 set the default policy of the INPUT, FORWARD and OUTPUT chains to
ACCEPT, and the counters to zero.

• lines 7-12 (inclusive) are the desired rules to be loaded on startup.

• line 13 enforces the above con�guration.

note: now onwards, we may describe rules without explicitly pre�xing them with the iptables
command.

3.2 IPTables List Command

The iptables list command displays all the chains, with their rules, that are currently in place.

Listing 3: Listing con�g: Empty con�guration

1 [root@someserver ~]$ iptables -L
2 Chain INPUT (policy ACCEPT)
3 target prot opt source destination
4

5 Chain FORWARD (policy ACCEPT)
6 target prot opt source destination
7

8 Chain OUTPUT (policy ACCEPT)
9 target prot opt source destination

The above output indicates that there are 3 chains, but all of them are empty. This is also the
output shown when iptables has been switched o�.

A simple con�guration may be like the following:

Listing 4: Listing con�g: Basic con�guration

1 [root@someserver ~]$ iptables -L
2 Chain INPUT (policy ACCEPT)
3 target prot opt source destination
4 ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
5 ACCEPT icmp -- anywhere anywhere
6 ACCEPT all -- anywhere anywhere
7 ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
8 REJECT all -- anywhere anywhere reject-with icmp-host-prohibited
9

7

10 Chain FORWARD (policy ACCEPT)
11 target prot opt source destination
12 REJECT all -- anywhere anywhere reject-with icmp-host-prohibited
13

14 Chain OUTPUT (policy ACCEPT)
15 target prot opt source destination

Each IP Tables command has two versions a shorthand version and a verbose version. Following
the general style used by most linux command line utilities, the verbose versions all use a double
dash and the shorthand versions use a single dash.

Listing 5: Listing con�g: Some other invocations

1 [root@someserver ~]$ iptables --list # verbose version
2 [root@someserver ~]$ iptables -L --line-numbers # listing with line numbers
3 [root@someserver ~]$ iptables -L -n # list ports and IP addresses

numerically, rather than by name

Listing ports and IP addresses numerically (as shown in the last example of listing 5) is highly
advisable for quick outputs when the ruleset is large. The reason is that when doing a normal
listing, iptables performs DNS lookups for the addresses in each rule, which may cause a
considerable delay in printing the output.

Listing 6: Di�erence in output of normal and numeric listing

1 [root@someserver ~]$ iptables -L # normal
2 Chain INPUT (policy ACCEPT)
3 target prot opt source destination
4 ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
5 ACCEPT icmp -- anywhere anywhere
6 ACCEPT all -- anywhere anywhere
7 ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh
8 REJECT all -- anywhere anywhere reject-with icmp-host-prohibited
9

10 Chain FORWARD (policy ACCEPT)
11 target prot opt source destination
12 REJECT all -- anywhere anywhere reject-with icmp-host-prohibited
13

14 Chain OUTPUT (policy ACCEPT)
15 target prot opt source destination
16

17 [root@someserver ~]$ iptables -L -n # numeric
18 Chain INPUT (policy ACCEPT)
19 target prot opt source destination
20 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
21 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
22 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
23 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22
24 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited
25

26 Chain FORWARD (policy ACCEPT)
27 target prot opt source destination
28 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited
29

30 Chain OUTPUT (policy ACCEPT)
31 target prot opt source destination

Notice how, in the numeric version, keywords get replaced with their numeric meanings.

3.3 IP Tables Flush Command

If there are any rules listed we �rst need to clear them. To do that we use the �ush command:

8

Listing 7: Flush command

1 [root@someserver ~]$ iptables --flush
2 [root@someserver ~]$ iptables -F # shorthand version

Usually, while applying any fresh con�guration, the �rst step is to purge the existing one using
the �ush command.

3.4 IP Tables Policy Command

Using this command, we can set the default policy for each of the chains. As mentioned earlier,
the policy is the action to be performed on a packet which passes through the chain without being
matched by any rule.

Listing 8: Setting DROP as the policy for all 3 built-in chains

1 [root@someserver ~]$ iptables --policy INPUT DROP # policy for chain INPUT set to
DROP

2 [root@someserver ~]$ iptables --policy FORWARD DROP # likewise for chain FORWARD
3 [root@someserver ~]$ iptables --policy OUTPUT DROP # and for chain OUTPUT

This sets our overall policy to drop every packet that we don't explicitly allow.

The shorthand version of the policy command is:

Listing 9: Short version

1 [root@someserver ~]$ iptables -P INPUT DROP # set the policy for chain INPUT as DROP

3.5 Writing Rules

The basic format of an iptables rule is as decribed in listing 10.

Listing 10: iptables rule format

1 iptables [-t table] command [match] [target/jump]

There is nothing that says that the target instruction has to be the last function in the line.
However, we generally adhere to this syntax to get the best readability. Most people write their
rules in this way. Hence, if we read someone else's script, it becomes easier to recognize the syntax
and easily understand the rule.

If we want to use a table other than the standard table, we insert the table speci�cation at the
point at which [table] is speci�ed. However, it is not necessary to state explicitly what table to
use, since by default iptables uses the �lter table on which to implement all commands. Neither
do we have to specify the table at just this point in the rule. It could be set pretty much anywhere
along the line. However, it is more or less standard to put the table speci�cation at the beginning.

The command always comes �rst, unless a table is explicitly speci�ed, in which case the table
declaration comes �rst, followed by the command. We use 'command' to tell the program what
to do, for example to insert a rule (-I) or to add a rule to the end of the chain (-A), or to delete
a rule (-D).

The match is the part of the rule that iptables sends to the kernel that details the speci�c character
of the packet, what makes it di�erent from all other packets. Here we could specify what IP address
the packet comes from, from which network interface, the intended IP address, port, protocol or
whatever. There is a lot of di�erent matches that we can use.

9

Finally we have the target of the packet. If all the matches are met for a packet, we tell iptables
what to do with it. We could, for example, tell it to send the packet to another chain that we've
created ourselves, and which is part of this particular table. We could instruct iptables to drop
the packet and do no further processing, or we could make it send a speci�ed reply to the sender.

Lets take a sample iptables rule and �nd out what each part means.

Listing 11: Sample iptables rule

1 iptables \\ # command
2 -A INPUT \\ # append this rule to chain INPUT
3 -s 192.168.1.10 \\ # packet source 192.168.1.10
4 -d 10.1.15.1 \\ # packet destination 10.1.15.1
5 -p tcp \\ # protocol TCP
6 --dport 22 \\ # destination port 22 (SSH)
7 -j ACCEPT \\ # if everything matches, jump to ACCEPT (action)

A general iptables rule lists out a set of conditions and an action such that if a packet matches all
the given conditions, the said action should be performed on it.

3.5.1 Leveraging the connection state

iptables can determine the �state� of a TCP packet. This is a feature commonly used to identify
packets while writing rules. For example, there is the three-way handshake between two hosts
when transmitting data:

1. new => server1 connects to server2 issuing a SYN (Synchronize) packet.

2. related => server2 receives the SYN packet, and then responds with a SYN-ACK (Syn-
chronize Acknowledgment) packet.

3. established => server1 receives the SYN-ACK packet and then responds with the �nal
ACK (Acknowledgment) packet.

The three rules in listing 12, together, allow this kind of TCP Communication.

Listing 12: iptables rules allowing for three-way TCP handshakes

1 -A INPUT \\ # append to chain INPUT
2 -m state \\ # load module "state"
3 --state RELATED,ESTABLISHED \\ # packets with state RELATED or ESTABLISHED
4 -j ACCEPT # jump to ACCEPT
5

6 -A FORWARD \\ # append to chain FORWARD
7 -i eth0 \\ # packets being forwarded by interface eth0
8 -m state \\ # load module "state"
9 --state RELATED,ESTABLISHED \\ # packets with state RELATED or ESTABLISHED
10 -j ACCEPT # jump to ACCEPT
11

12 -A OUTPUT \\ # append to chain OUTPUT
13 -m state \\ # load module "state"
14 --state NEW,RELATED,ESTABLISHED \\ # packets with state NEW, RELATED or ESTABLISHED
15 -j ACCEPT # jump to ACCEPT

The rules in listing 12 utilize the state module of iptables. Note that modules are loaded
dynamically, as per requirement, using the -m <modulename> switch.

note: the state module is now obsoleted by the conntrack module, which has enhanced func-
tionality.

3.5.2 Blocking packets from speci�c sources

The rule in listing 13 blocks all incoming tra�c from the IP 10.1.34.246.

10

Listing 13: iptables rule restricting all incoming tra�c from 10.1.34.246

1 iptables \\
2 -A INPUT \\ # append rule to chain INPUT
3 -s 10.1.34.246 \\ # packets from source 10.1.34.246
4 -j DROP # DROP (regardless of protocol/packet type)

The rule in listing 14 blocks all incoming tra�c on port 25 (SMTP) from the host mail.spammer.org
(assuming it is a host which sends spam mail).

Listing 14: iptables rule preventing mail-spammming from a known spam source

1 iptables \\
2 -A INPUT \\ # add as the last rule of chain INPUT (append)
3 -s mail.spammer.org \\ # packet source mail.spammer.org
4 -p tcp \\ # protocol tcp
5 --dport 25 \\ # packet destination port 25
6 -j REJECT # jump to action REJECT

Notice, as shown in listing 14, line 3, that iptables accepts domain names in source/destination
speci�cations.

3.5.3 Accepting packets of desired type

Knowing the port being used for an application allows us to leverage that fact to accept/reject
tra�c pertaining to that application. The rules in listing 15 do exactly that.

Listing 15: iptables rules permitting tra�c of certain types

1 iptables -A INPUT -p tcp --dport 22 -j ACCEPT # ssh
2 iptables -A INPUT -p tcp --dport 25 -j ACCEPT # sendmail/smtp
3 iptables -A INPUT -p tcp --dport 20:21 -j ACCEPT # ftp
4 iptables -A INPUT -p tcp --dport 80 -j ACCEPT # http
5 iptables -A INPUT -p icmp -j ACCEPT # icmp/ping packets

Notice how, in rule 3 of listing 15, we can specify a range of ports.

3.5.4 Saving/Restoring Rules to/from �les

The iptables-save and iptables-restore commands allow us to save and restore rules
to/from �les. Consult the man-pages attached, for reference.

note: using iptables-save to redirect output will overwrite /etc/sysconfig/iptables, so it
must be used with care. Any custom comments etc. present in the �le will be lost.

3.5.5 Custom (User-de�ned) Chains

We can create our own chains, in iptables. This is very helpful in both organizing our �rewall
con�g and streamlining it to make it more e�cient.

Let us demonstrate the chain management commands by an example :

• Creating a chain

Listing 16: Chain creation

1 iptables --new-chain OUTPUTDROP # create a chain by name OUTPUTDROP
2 # iptables -N OUTPUTDROP # abbreviated version
3 iptables --delete-chain OUTPUTDROP # oops! wrong name... DELETE!
4 # iptables -X OUTPUTDROP # abbreviated version of delete
5 iptables -N OUTACCEPT # re-create with the intended name

11

Now we have a chain called outaccept, which is empty.

• Adding rules to the chain
Next, we will add rules to the chain. Let us add the exact same rules which are present in
the output chain (the reason will become clear soon).

Listing 17: Adding Rules to the Chain

1 iptables -A OUTACCEPT \\ # append to chain OUTACCEPT
2 -o lo \\ # packets going out through the loopback interface
3 -j ACCEPT # allow them to pass
4 iptables -A OUTACCEPT \\
5 -o eth0 \\ # packets exiting through interface eth0
6 -j ACCEPT

Once these rules are added, a rule listing should show output as shown in listing 18

Listing 18: The result

1 [root@someserver ~]$ iptables -L -v --line-numbers
2 ...
3 ...
4 Chain OUTPUT (policy DROP 0 packets, 0 bytes)
5 num pkts bytes target prot opt in out source destination
6 1 34 2252 ACCEPT all -- any lo anywhere anywhere
7 2 1651 299K ACCEPT all -- any eth0 anywhere anywhere
8

9 Chain OUTACCEPT (0 references)
10 num pkts bytes target prot opt in out source destination
11 1 0 0 ACCEPT all -- any lo anywhere anywhere
12 2 0 0 ACCEPT all -- any eth0 anywhere anywhere
13 ...
14 ...

Notice that the chain outaccept has 0 references, which means there is no rule that points
to it, and thus the chain is currently unused.

• Referencing the chain
Our chain now has the exact same rules as the chain output. Let us now modify the
output chain such that it only contains a single rule which points to chain outaccept.
The procedure is outlined in listing

Listing 19: Referencing our Chain

1 [root@someserver ~]$ iptables \\
2 -I OUTPUT 1 \\ # insert in chain OUTPUT at position 1
3 -j OUTACCEPT # jump to chain OUTACCEPT
4 [root@someserver ~]$ iptables -L -v --line-numbers OUTPUT
5 Chain OUTPUT (policy DROP 0 packets, 0 bytes)
6 num pkts bytes target prot opt in out source destination
7 1 421 71264 OUTACCEPT all -- any any anywhere anywhere
8 2 34 2252 ACCEPT all -- any lo anywhere anywhere
9 3 1651 299K ACCEPT all -- any eth0 anywhere anywhere

10 [root@someserver ~]$ iptables -D OUTPUT 2 # delete rule 2 of chain OUTPUT
11 [root@someserver ~]$ iptables -D OUTPUT 2 # delete rule 2 of chain OUTPUT

Notice that in line 11 we again delete rule 2 of chain output. This makes sense because
after the delete performed in the previous line, only 2 rules remain (the 2nd one being the
one which was earlier 3rd).

• The net result
After all the steps outlined above, the iptables listing of chains output and outaccept

should look like what is shown in listing 20.

12

Listing 20: The �nal result

1 Chain OUTPUT (policy DROP 0 packets, 0 bytes)
2 num pkts bytes target prot opt in out source destination
3 1 421 71264 OUTACCEPT all -- any any anywhere anywhere
4

5 Chain OUTACCEPT (1 references)
6 num pkts bytes target prot opt in out source destination
7 1 14 980 ACCEPT all -- any lo anywhere anywhere
8 2 407 70284 ACCEPT all -- any eth0 anywhere anywhere

This setup means that any packet going out of the machine will be sent to chain outaccept,
which only matches packets exiting through either eth0 or lo interfaces.
Packets which do not match will then return to chain output and since there are no more
rules to check, they will get processed according to the chain policy of chain output.

It is important to know the behaviour of custom chains. Let's assume a rule, say rule number n
of some chain X references a custom chain, Y . When a packet matches that rule, and is passed
to chain Y , iptables checks it against all the rules in Y , one by one. If some rule matches, it gets
applied. If none of the rules match, then the control is sent back to the parent chain, X, where
execution continues from rule n + 1. If n was the last rule of chain X, then the chain policy of
chain X gets applied to the packet.

The �ow can be understood from �gure 5.

Figure 5: The �ow of control in case of custom-chains

3.5.6 Logging

iptables allows us to log matches, by default to the �le /var/log/messages. Logging is done
by specifying the jump target of a rule as log. This instructs iptables to write log entries for
packets matching that rule.

More often than not, one wishes to do more than just logging, for the packets that match a rule.
The standard method is to write two identical rules (in terms of match criteria), but give them
di�erent jump targets. Consider the rules in listing 21.

Listing 21: iptables rules to log and drop packets

1 -A INPUT -s 10.1.34.40 -j LOG # make a log entry for each matching packet
2 -A INPUT -s 10.1.34.40 -j DROP # also drop each matching packet

13

It is a good practice to create a custom chain, which logs and drops any packet passed to it, for
this same purpose. It removes redundancy from the main chains (by allowing us to write a single
rule where earlier there were two). It also improves e�ciency because the matching process for
the packet occurs only once, instead of twice. Listing 22 shows how to do the same thing as listing
21 using a custom chain.

Listing 22: iptables rules to log and drop packets using a user-de�ned chain

1 # Create the LOGDROP chain
2 iptables -N LOGDROP # create a chain called LOGDROP
3 iptables -A LOGDROP \\ # append this rule to chain LOGDROP
4 -j LOG \\ # jump to action LOG
5 --log-prefix "LOGDROP " # with log-prefix LOGDROP (optional)
6 iptables -A LOGDROP \\ # append to chain LOGDROP
7 -j DROP # drop the packet
8

9 # Log and drop all packets from 10.1.34.40
10 iptables -A INPUT -s 10.1.34.40 -j LOGDROP # notice the action specified as LOGDROP

The custom-chains method is especially helpful in case of rules where the matching criteria are
many, and complex.

3.5.7 IPTables matches

-p, --protocol :
iptables -A input -p tcp ...

This match is used to check for certain protocols. Examples of protocols are TCP, UDP and
ICMP. The protocol must either be one of the internally speci�ed TCP, UDP or ICMP. It
may also take a value speci�ed in the /etc/protocols �le, and if it can't �nd the protocol
there it will reply with an error. The protocl may also be an integer value. For example,
the ICMP protocol is integer value 1, TCP is 6 and UDP is 17. Finally, it may also take the
value ALL. ALL means that it matches only TCP, UDP and ICMP. If this match is given
the integer value of zero (0), it means ALL protocols, which in turn is the default behavior,
if the --protocol match is not used. This match can also be inversed with the ! sign, so
--protocol ! tcp would mean to match UDP and ICMP.

-s, --src, --source :
iptables -A INPUT -s 192.168.1.1 ...

This is the source match, which is used to match packets, based on their source IP address.
The main form can be used to match single IP addresses, such as 192.168.1.1. It could
also be used with a netmask in a CIDR "bit" form, by specifying the number of ones (1s)
on the left side of the network mask. This means that we could for example add /24 to
use a 255.255.255.0 netmask. We could then match whole IP ranges, such as our local
networks or network segments behind the �rewall. The line would then look something like
192.168.0.0/24. This would match all packets in the 192.168.0.x range. Another way is to
do it with a regular netmask in the 255.255.255.255 form (i.e., 192.168.0.0/255.255.255.0).
We could also invert the match with an ! just as before. If we were, in other words, to use a
match in the form of --source ! 192.168.0.0/24, we would match all packets with
a source address not coming from within the 192.168.0.x range. The default is to match all
IP addresses.

-d, --dst, --destination :
iptables -A INPUT -d 192.168.1.1 ...

The --destination match is used for packets based on their destination address or addresses.
It works pretty much the same as the --source match and has the same syntax, except
that the match is based on where the packets are going to. To match an IP range, we can add
a netmask either in the exact netmask form, or in the number of ones (1's) counted from the

14

left side of the netmask bits. Examples are: 192.168.0.0/255.255.255.0 and 192.168.0.0/24.
Both of these are equivalent. We could also invert the whole match with an ! sign, just
as before. --destination ! 192.168.0.1 would in other words match all packets
except those destined to the 192.168.0.1 IP address.

-i, --in-interface :
iptables -A INPUT -i eth0 ...

This match is used for the interface the packet came in on. Note that this option is only
legal in the INPUT, FORWARD and PREROUTING chains and will return an error message
when used anywhere else. The default behaviour of this match, if no particular interface is
speci�ed, is to assume a string value of +. The + value is used to match a string of letters
and numbers. A single + would, in other words, tell the kernel to match all packets without
considering which interface it came in on. The + string can also be appended to the type
of interface, so eth+ would be all Ethernet devices. We can also invert the meaning of this
option with the help of the ! sign. The line would then have a syntax looking something
like -i ! eth0, which would match all incoming interfaces, except eth0.

-o, --out-interface :
iptables -A FORWARD -o eth0 ...

The --out-interfacematch is used for packets on the interface from which they are leav-
ing. Note that this match is only available in the OUTPUT, FORWARD and POSTROUT-
ING chains, the opposite in fact of the --in-interface match. Other than this, it works
pretty much the same as the --in-interface match. The + extension is understood as
matching all devices of similar type, so eth+ would match all eth devices and so on. To
invert the meaning of the match, you can use the ! sign in exactly the same way as for the
--in-interface match. If no --out-interface is speci�ed, the default behaviour for
this match is to match all devices, regardless of where the packet is going.

-f, --fragment :
iptables -A INPUT -f ...

This match is used to match the second and third part of a fragmented packet. The reason
for this is that in the case of fragmented packets, there is no way to tell the source or
destination ports of the fragments, nor ICMP types, among other things. Also, fragmented
packets might in rather special cases be used to compound attacks against other computers.
Packet fragments like this will not be matched by other rules, and hence this match was
created. This option can also be used in conjunction with the ! sign; however, in this case
the ! sign must precede the match, i.e. ! -f. When this match is inverted, we match all
header fragments and/or unfragmented packets. What this means, is that we match all the
�rst fragments of fragmented packets, and not the second, third, and so on. We also match
all packets that have not been fragmented during transfer. Note also that there are really
good defragmentation options within the kernel that you can use instead. As a secondary
note, if you use connection tracking you will not see any fragmented packets, since they are
dealt with before hitting any chain or table in iptables.

3.5.8 Implicit matches

Here we describe those matches which are loaded implicitly. Implicit matches are implied, taken
for granted, automatic. For example when we match on --protocol tcp without any further
criteria. There are currently three types of implicit matches for three di�erent protocols. These
are TCP matches, UDP matches and ICMP matches. The TCP based matches contain a set of
unique criteria that are available only for TCP packets. UDP based matches contain another set
of criteria that are available only for UDP packets.

TCP Matches

15

These matches are protocol speci�c and are only available when working with TCP packets and
streams. To use these matches, one has to specify --protocol tcp on the command line before
trying to use them. Note that the --protocol tcp match must be to the left of the protocol
speci�c matches.

--sport, --source-port :
iptables -A INPUT -p tcp --sport 22 ...

The --source-port match is used to match packets based on their source port. Without
it, we imply all source ports. This match can either take a service name or a port number.
If we specify a service name, the service name must be in the /etc/services �le, since
iptables uses this �le in which to �nd. If we specify the port by its number, the rule will load
slightly faster, since iptables doesn't have to check up the service name. However, the match
might be a little bit harder to read than if we use the service name. While writing a rule-
set consisting of 200 rules or more (large rule-set), we should de�nitely use port numbers,
since the di�erence is really noticeable. (On a slow server, this could make as much as 10
seconds di�erence, for a large rule-set containing 1000 rules or so). We can also use the
--source-port match to match a range of ports, --source-port 22:80 for example.
This example would match all source ports between 22 and 80. If we omit specifying the
�rst port, port 0 is assumed (is implicit). --source-port :80 would then match port
0 through 80. And if the last port speci�cation is omitted, port 65535 is assumed. If one
were to write --source-port 22:, it would signify a match for all ports from port 22
through port 65535. If we invert the port range, iptables automatically reverses the inversion,
i.e. --source-port 80:22 is simply interpreted as --source-port 22:80. We can
invert a match by adding a ! sign. For example, --source-port ! 22 means match all
ports but port 22. The inversion could also be used together with a port range and would
then look like --source-port ! 22:80, which would mean we want to match all ports
but ports 22 through 80. Note that this match does not handle multiple separated ports
and port ranges. For more information about those, look at the multiport match extension.

--dport, --destination-port :
iptables -A INPUT -p tcp --dport 22 ...

This match is used to match TCP packets according to their destination port. It uses
exactly the same syntax as the --source-port match. It understands port and port
range speci�cations, as well as inversions. It also reverses high and low ports in port range
speci�cations, as above. The match will also assume values of 0 and 65535 if the high or
low port is left out in a port range speci�cation. In other words, exactly the same as the
--source-port syntax.

--tcp-�ags :
iptables -p tcp --tcp-flags SYN,FIN,ACK SYN ...

This match is used to match on the TCP �ags in a packet. First of all, the match takes
a list of �ags to compare (a mask) and secondly it takes list of �ags that should be set to
1, or turned on. Both lists should be comma-delimited. The match knows about the SYN,
ACK, FIN, RST, URG, PSH �ags, and it also recognizes the words ALL and NONE. ALL
and NONE is pretty much self describing: ALL means to use all �ags and NONE means to
use no �ags for the option. --tcp-flags ALL NONE would in other words mean to check
all of the TCP �ags and match if none of the �ags are set. This option can also be inverted
with the ! sign. For example, if we specify ! SYN,FIN,ACK SYN, we would get a match
that would match packets that had the ACK and FIN bits set, but not the SYN bit. Also
note that the comma delimitation should not include spaces.

--tcp-option :
iptables -p tcp --tcp-option 16 ...

This match is used to match packets depending on their TCP options. A TCP Option is a
speci�c part of the header. This part consists of 3 di�erent �elds. The �rst one is 8 bits long
and tells us which Options are used in this stream, the second one is also 8 bits long and

16

tells us how long the options �eld is. The reason for this length �eld is that TCP options
are, well, optional. To be compliant with the standards, we do not need to implement all
options, but instead we can just look at what kind of option it is, and if we do not support
it, we just look at the length �eld and can then jump over this data. This match is used
to match di�erent TCP options depending on their decimal values. It may also be inverted
with the ! �ag, so that the match matches all TCP options but the option given to the
match. For a complete list of all options, take a closer look at the Internet Engineering Task
Force who maintains a list of all the standard numbers used on the Internet.

UDP Matches

These matches are speci�c to UDP Packets. They are implicitly loaded when you specify the
--protocol UDP match and will be available after this speci�cation. Note that UDP packets
are not connection oriented, and hence there is no such thing as di�erent �ags to set in the packet to
give data on what the datagram is supposed to do, such as open or closing a connection, or if they
are just simply supposed to send data. UDP packets do not require any kind of acknowledgment
either. If they are lost, they are simply lost (Not taking ICMP error messaging etc into account).
This means that there are quite a lot less matches to work with on a UDP packet than there is
on TCP packets.

--sport, --source-port :
iptables -A INPUT -p udp --sport 53 ...

This match works exactly the same as its TCP counterpart.

--dport, --destination-port :
iptables -A INPUT -p udp --dport 53 ...

The same goes for this match as for --source-port above. It is exactly the same as for
the equivalent TCP match, but here it applies to UDP packets.

ICMP Matches

ICMP packets are even more short-lived than UDP Packets, in that they are connectionless. The
ICMP protocol is mainly used for error reporting and for connection controlling and such. ICMP
is not a protocol subordinated to the IP protocol, but more of a protocol that augments the IP
protocol and helps in handling errors. The headers of ICMP packets are very similar to those
of the IP headers, but di�er in a number of ways. The main feature of this protocol is the type
header, that tells us what the packet is for. One example is, if we try to access an unaccessible IP
address, we would normally get an ICMP host unreachable in return.

There is only one ICMP speci�c match available for ICMP packets, and hopefully this should
su�ce. This match is implicitly loaded when we use the --protocol ICMP match and we get access
to it automatically. Note that all the generic matches can also be used, so that among other things
we can match on the source and destination addresses.

--icmp-type :
iptables -A INPUT -p icmp --icmp-type 8 ...

This match is used to specify the ICMP type to match. ICMP types can be speci�ed either by
their numeric values or by their names. Numerical values are speci�ed in RFC 792. To �nd a
complete listing of the ICMP name values, run iptables --protocol icmp --help.
This match can also be inverted with the ! sign, for example: --icmp-type ! 8. Note
that some ICMP types are obsolete, and others again may be �dangerous� for an unprotected
host since they may, among other things, redirect packets to the wrong places. The type
and code may also be speci�ed by their typename, numeric type, and type/code as well. For
example --icmp-type network-redirect, --icmp-type 8 or --icmp-type 8/0.
For a complete listing of the names, run iptables -p icmp --help (short version of
the command mentioned previously).

17

3.5.9 Explicit matches

Explicit matches are those that have to be speci�cally loaded with the -m or --match option.
State matches, for example, demand the directive -m state prior to entering the actual match that
we want to use. Some of these matches may be protocol speci�c . Some may be unconnected with
any speci�c protocol, for example connection states. The di�erence between implicitly loaded
matches and explicitly loaded ones, is that the implicitly loaded matches will automatically be
loaded when, for example, we match on the properties of TCP packets, while explicitly loaded
matches will never be loaded automatically.

Conmark match

The connmark match is used to match marks that has been set on a connection with the CONN-
MARK target. It only takes one option.

--mark :
iptables -A INPUT -m connmark --mark 12 -j ACCEPT

The mark option is used to match a speci�c mark associated with a connection. The mark
match must be exact, and if we want to �lter out unwanted �ags from the connection
mark before actually matching anything, we can specify a mask that will be anded to the
connection mark. For example, if we have a connection mark set to 33 (10001 in binary) on
a connection, and want to match the �rst bit only, we would be able to run something like
--mark 1/1. The mask (00001) would be masked to 10001, so 10001 && 00001 equals 1,
and then matched against the 1.

Conntrack match

The conntrack match is an extended version of the state match, which makes it possible to match
packets in a much more granular way. It let's you look at information directly available in the
connection tracking system. There are a number of di�erent matches put together in the conntrack
match, for several di�erent �elds in the connection tracking system. These are compiled together
into the list below. To load these matches, you need to specify -m conntrack.

--ctstate :
iptables -A INPUT -p tcp -m conntrack --ctstate RELATED ...

This match is used to match the state of a packet, according to the conntrack state. It is
used to match pretty much the same states as in the original state match. The valid entries
for this match are:

• INVALID

• ESTABLISHED

• NEW

• RELATED

• SNAT

• DNAT

The entries can be used together with each other separated by a comma. For exam-
ple, -m conntrack --ctstate ESTABLISHED,RELATED. It can also be inverted by
putting a ! in front of --ctstate. For example: -m conntrack ! --ctstate
ESTABLISHED,RELATED, which matches all but the ESTABLISHED and RELATED states.

--ctproto :
iptables -A INPUT -p tcp -m conntrack --ctproto TCP ...

This matches the protocol, the same as the --protocol does. It can take the same types
of values, and is inverted using the ! sign. For example, -m conntrack ! --ctproto
TCP matches all protocols but the TCP protocol.

18

--ctorigsrc :
iptables -A INPUT -p tcp -m conntrack --ctorigsrc 192.168.0.0/24 ...

--ctorigsrc matches based on the original source IP speci�cation of the conntrack en-
try that the packet is related to. The match can be inverted by using a ! between the
--ctorigsrc and IP speci�cation, such as --ctorigsrc ! 192.168.0.1. It can
also take a netmask of the CIDR form, such as --ctorigsrc 192.168.0.0/24.

--ctorigdst :
iptables -A INPUT -p tcp -m conntrack --ctorigdst 192.168.0.0/24 ...

This match is used exactly as the --ctorigsrc, except that it matches on the destination �eld
of the conntrack entry. It has the same syntax in all other respects.

--ctreplsrc :
iptables -A INPUT -p tcp -m conntrack --ctreplsrc 192.168.0.0/24 ...

The --ctreplsrc match is used to match based on the original conntrack reply source
of the packet. Basically, this is the same as the --ctorigsrc, but instead we match the
reply source expected of the upcoming packets. This target can, of course, be inverted and
address a whole range of addresses, just the same as the the previous targets in this class.

--ctrepldst :
iptables -A INPUT -p tcp -m conntrack --ctrepldst 192.168.0.0/24 ...

The --ctrepldst match is the same as the --ctreplsrc match, with the exception that
it matches the reply destination of the conntrack entry that matched the packet. It too can
be inverted, and accept ranges, just as the --ctreplsrc match.

--ctstatus :
iptables -A INPUT -p tcp -m conntrack --ctstatus RELATED ...

This matches the status of the connection. It can match the following statuses:

• NONE - The connection has no status at all.

• EXPECTED - This connection is expected and was added by one of the expectation
handlers.

• SEEN_REPLY - This connection has seen a reply but isn't assured yet.

• ASSURED - The connection is assured and will not be removed until it times out or
the connection is closed by either end.

This can also be inverted by using the ! sign.

Limit match

The limit match extension must be loaded explicitly with the -m limit option. This match can,
for example, be used to advantage to give limited logging of speci�c rules etc. For example, we
could use this to match all packets that do not exceed a given value, and after this value has been
exceeded, limit logging of the event in question. Think of a time limit: We could limit how many
times a certain rule may be matched in a certain time frame, for example to lessen the e�ects of
DoS syn �ood attacks. This is its main usage, but there are more usages, of course. The limit
match may also be inverted by adding a ! �ag in front of the limit match. It would then be
expressed as -m limit ! --limit 5/s.This means that all packets will be matched after they
have broken the limit.

To further explain the limit match, it is basically a token bucket �lter (like delay pools in squid).
Consider having a leaky bucket where the bucket leaks X packets per time-unit. X is de�ned
depending on how many matching packets we get, so if we get 3 packets, the bucket leaks 3
packets per that time-unit. The --limit option tells us how many packets to re�ll the bucket
with per time-unit, while the --limit-burst option tells us how big the bucket is in the �rst
place. So, setting --limit 3/minute --limit-burst 5, and then receiving 5 matches will

19

empty the bucket. After 20 seconds, the bucket is re�lled with another token, and so on until the
--limit-burst is reached again or until they get used.

Let us consider the example below for further explanation of how this may look.

1. We set a rule with -m limit --limit 5/second --limit-burst 10/second. The
limit-burst token bucket is set to 10 initially. Each packet that matches the rule uses a
token.

2. We get a packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a 1/1000 of a second.

3. The token bucket is now empty. Once the token bucket is empty, the packets that qualify
for the rule otherwise no longer match the rule and proceed to the next rule if any, or hit
the chain policy.

4. For each 1/5 s without a matching packet, the token count goes up by 1, upto a maximum
of 10. 1 second after receiving the 10 packets, we will once again have 5 tokens left.

5. And of course, the bucket will be emptied by 1 token for each packet it receives.

Limit match options:

--limit :
iptables -A INPUT -m limit --limit 3/hour ...

This sets the maximum average match rate for the limit match. It is speci�ed with a number
and an optional time unit. The following time units are currently recognized: second/min-
ute/hour/day. The default value here is 3 per hour, or 3/hour. This tells the limit match
how many times to allow the match to occur per time unit (e.g. per minute).

--limit-burst :
iptables -A INPUT -m limit --limit-burst 5 ...

This is the setting for the burst limit of the limit match. It tells iptables the maximum
number of tokens available in the bucket when we start, or when the bucket is full. This
number gets decremented by one for every packet that arrives, down to the lowest possible
value, 1. The bucket will be re�lled by the limit value every time unit, as speci�ed by the
--limit option. The default --limit-burst value is 5.

Mark match

The mark match extension is used to match packets based on the marks they have set. A mark
is a special �eld, only maintained within the kernel, that is associated with the packets as they
travel through the computer. Marks may be used by di�erent kernel routines for such tasks as
tra�c shaping and �ltering.

Mark match options:

--mark :
iptables -t mangle -A INPUT -m mark --mark 1 ...

This match is used to match packets that have previously been marked. Marks can be set
with the MARK target. All packets traveling through Net�lter get a special mark �eld
associated with them. Note that this mark �eld is not in any way propagated, within or
outside the packet. It stays inside the computer that made it. If the mark �eld matches the
mark, it is a match. The mark �eld is an unsigned integer, hence there can be a maximum of
4294967296 di�erent marks. We may also use a mask with the mark. The mark speci�cation
would then look like, for example, --mark 1/1. If a mask is speci�ed, it is logically anded
with the mark speci�ed before the actual comparison.

Recent match

The recent match is a rather large and complex matching system, which allows us to match packets
based on recent events that we have previously matched. For example, if we would see an outgoing

20

IRC connection, we could set the IP addresses into a list of hosts, and have another rule that allows
identd requests back from the IRC server within 15 seconds of seeing the original packet.

Before we can take a closer look at the match options, let's try and explain a little bit how it works.
First of all, we use several di�erent rules to accomplish the use of the recent match. The recent
match uses several di�erent lists of recent events. The default list being used is the DEFAULT
list. We create a new entry in a list with the set option, so once a rule is entirely matched (the set
option is always a match), we also add an entry in the recent list speci�ed. The list entry contains
a timestamp, and the source IP address used in the packet that triggered the set option. Once
this has happened, we can use a series of di�erent recent options to match on this information, as
well as update the entries timestamp, etc.

Finally, if we would for some reason want to remove a list entry, we would do this using the
--remove match option from the recent match. All rules using the recent match, must load the
recent module (-m recent) as usual. Before we go on with an example of the recent match, let's
take a look at some of the options.

Recent match options (relevant ones):

--set :
iptables -A OUTPUT -m recent --set ...

This creates a new list entry in the named recent list, which contains a timestamp and the
source IP address of the host that triggered the rule. This match will always return success,
unless it is preceded by a ! sign, in which case it will return failure.

--rcheck :
iptables -A OUTPUT -m recent --name examplelist --rcheck ...

The --rcheck option will check if the source IP address of the packet is in the named list. If
it is, the match will return true, otherwise it returns false. The option may be inverted by
using the ! sign. In the later case, it will return true if the source IP address is not in the
list, and false if it is in the list.

--update :
iptables -A OUTPUT -m recent --name examplelist --update ...

This match is true if the source combination is available in the speci�ed list and it also
updates the last-seen time in the list. This match may also be reversed by setting the !
mark in front of the match. For example, ! --update.

--remove :
iptables -A INPUT -m recent --name example --remove ...

This match will try to �nd the source address of the packet in the list, and returns true if the
packet is there. It will also remove the corresponding list entry from the list. The command
is also possible to inverse with the ! sign.

--seconds :
iptables -A INPUT -m recent --name example --check --seconds 60 ...

This match is only valid together with the --check and --update matches. The --seconds
match is used to specify how long since the "last seen" column was updated in the recent
list. If the last seen column was older than this amount in seconds, the match returns false.
Other than this the recent match works as normal, so the source address must still be in the
list for a true return of the match.

--hitcount :
iptables -A INPUT -m recent --name example --check --hitcount 20 ...

The --hitcount match must be used together with the --check or --update matches and it
will limit the match to only include packets that have seen at least the hitcount amount of
packets. If this match is used together with the --seconds match, it will require the speci�ed

21

hitcount packets to be seen in the speci�c timeframe. This match may also be reversed by
adding a ! sign in front of the match. Together with the --seconds match, this means that
a maximum of this amount of packets may have been seen during the speci�ed timeframe.
If both of the matches are inversed, then a maximum of this amount of packets may have
been seen during the last minumum of seconds.

--rsource :
iptables -A INPUT -m recent --name example --rsource ...

The --rsource match is used to tell the recent match to save the source address and port in
the recent list. This is the default behavior of the recent match.

--rdest :
iptables -A INPUT -m recent --name example --rdest ...

The --rdest match is the opposite of the --rsource match in that it tells the recent match to
save the destination address and port to the recent list.

3.6 Some recommended Best Practices for iptables

Don't set the default policy to DROP

All iptables chains have a default policy setting. If a packet doesn't match any of the rules in
a relevant chain, it will match the default policy and will be handled accordingly. Setting the
default policy to DROP can bring about some unintended consequences.

Consider a situation where the INPUT chain contains quite a few rules allowing tra�c, and the
default policy is set to DROP. Later on, another administrator logs into the server and �ushes the
rules. This will render the server completely inaccessible immediately. All of the packets will be
dropped since they match the default policy in the chain.

Instead of using the default policy, it is recommended to place an explicit DROP/REJECT rule at
the bottom of the chain that matches everything. Thus the default policy can be left as ACCEPT
and this should reduce the chance of blocking all access to the server.

Remember localhost

Lots of applications require access to the lo interface. We must ensure that rules are setup so that
the lo interface is not disturbed.

Split complicated rule groups into separate chains

It's important to keep your iptables rules manageable. If you have a certain subset of rules that
may be a little complicated, consider breaking them out into their own chain. You can just add
in a jump to that chain from your default set of chains.

Use REJECT until you know your rules are working properly

When you're writing iptables rules, you'll probably be testing them pretty often. One way to
speed up that process is to use the REJECT target rather than DROP. You'll get an immediate
rejection of your tra�c (a TCP reset) instead of wondering if your packet is being dropped or if
it's making it to your server at all. Once you're done with your testing, you can �ip the rules from
REJECT to DROP if you prefer.

Be stringent with your rules

Try to make your rules as speci�c as possible for your needs. For example, to allow ICMP pings
on servers (so that network tests can be run against them), one could easily add a rule into the
INPUT chain that looks like the one in listing 23.

Listing 23: Allow ping � non-stringent

1 iptables -A INPUT -p icmp -m icmp -j ACCEPT

22

But it isn't prudent to simply allow all ICMP tra�c. There are many types of ICMP Control
Messages, but for our purpose here, only allowing echo-requests is su�cient (listing 24).

Listing 24: Allow ping � stringent

1 iptables -A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

Use comments for obscure rules

We often write rules to cover edge cases that other administrators might not understand. It is
always wise to add comments explaining such rules.

Comments can be added using the -m comment directive, as shown in listing 25. However, it
only accepts comments upto 256 chars in size.

Listing 25: Adding comments � the right way

1 iptables -A INPUT -s www.spamhost.org -m comment --comment "block spamhost.org" -j DROP

These comments will appear in the iptables output on listing the current rules. They will also
appear in the saved iptables rules.

4 Applications

The applications of iptables are numerous. The following are some of the primary packet processing
techniques and their applications. Some of these have dedicated modules for their purpose, others
can be accomplished using the basic iptables functionalities :

Packet Filtering
Packet �ltering is the most basic type of network packet processing. Packet �ltering involves
examining packets at various points as they move through the kernel's networking code and
making decisions about how the packets should be handled (accepted into the next stage of
processing, dropped completely without a reply, rejected with a reply, and so on).

Accounting
Accounting, as the name suggests, involves using byte and/or packet counters associated
with packet matching criteria to monitor network tra�c volumes.

Connection Tracking
Connection tracking provides additional information that can match related packets in ways
that are otherwise impossible. For example, FTP (�le transfer protocol) sessions can involve
two separate connections: one for control and one for data transfer. Connection tracking for
FTP monitors the control connection and uses knowledge of the FTP protocol to extract
enough information from the control interactions to identify the data connections when they
are created. This tracking information is then made available for use by packet processing
rules.

Packet mangling
Packet mangling involves making changes to packet header �elds (such as network addresses
and port numbers) or payloads.

Network Address Translation (NAT)
Network address translation is a type of packet mangling that involves overwriting the source
and/or destination addresses and/or port numbers. Connection tracking information is used
to mangle related packets in speci�c ways. The term �Source NAT� (or just S-NAT or
SNAT) refers to NAT involving changes to the source address and/or port, and �Destination
NAT� (or just D-NAT or DNAT) refers to NAT involving changes to the destination address
and/or port.

23

Masquerading
Masquerading is a special type of SNAT in which one computer rewrites packets to make
them appear to come from itself. The computer's IP address used is determined auto-
matically, and if it changes, old connections are destroyed appropriately. Masquerading is
commonly used to share an Internet connection with a dynamic IP address among a network
of computers.

Port Forwarding
Port forwarding is a type of DNAT in which one com- puter (such as a �rewall) acts as a
proxy for one or more other computers. The �rewall accepts packets addressed to itself from
the outside network, but rewrites them to appear to be addressed to other computers on the
inside network before sending them on to their new destinations. In addition, related reply
packets from the inside computers are rewritten to appear to be from the �rewall and sent
back to the appropriate outside computer. Port forwarding is commonly used to provide
publicly accessible network services (such as web or email servers) by computers other than
the �rewall, without requiring more than one public IP address. To the outside world, it
appears that the services are being provided by the proxy machine, and to the actual server,
it appears that all requests are coming from the proxy machine.

Load Balancing
Load balancing involves distributing connections across a group of servers so that higher
total throughput can be achieved. One way to implement simple load balancing is to set up
port forwarding so that the destination address is selected in a round-robin fashion from a
list of possible destinations.

5 Some speci�c techniques and their con�guration

5.1 Port Knocking

Port knocking is a technique to secure ssh (or any other methods) access to the machine. It
involves knowing a pre-determined set of ports, which when �knocked� in sequence, open the ssh
port for the knocking IP. In other words, without performing a valid knock (telnet based connection
attempt on the set of ports, in the correct order), one cannot �unlock� the required port.

Portknocking is a a stealthy and robust system for network authentication across closed ports.
For instance, this can be used to avoid brute force attacks to ssh or ftp services.

Port knocking can be implemented using iptables in a number of ways, two of which we will discuss
here.

5.1.1 Implementation using custom-chains

this method uses the recent iptables module, to keep track of the ports knocked, and act accord-
ingly.

We will demonstrate how to setup a 4-port knocking system wherein the required ports to be
knocked are 10000,10001,10002 and 10003. Also, the user gets 30 seconds over which to perform
the knocking, otherwise he must start from stage 1.

Listing 26: iptables rules to setup port knocking

1 -N STAGE2
2 -A STAGE2 -m recent --name STAGE1 --remove
3 -A STAGE2 -m recent --name STAGE2 --set
4 -A STAGE2 -j LOG --log-prefix "INTO STAGE2: "
5

6 -N STAGE3
7 -A STAGE3 -m recent --name STAGE2 --remove

24

8 -A STAGE3 -m recent --name STAGE3 --set
9 -A STAGE3 -j LOG --log-prefix "INTO STAGE3: "
10

11 -N STAGE4
12 -A STAGE4 -m recent --name STAGE3 --remove
13 -A STAGE4 -m recent --name STAGE4 --set
14 -A STAGE4 -j LOG --log-prefix "INTO STAGE4: "
15

16 -A INPUT -m recent --update --name STAGE1
17

18 -A INPUT -p tcp --dport 10000 -m recent --set --name STAGE1
19 -A INPUT -p tcp --dport 10001 -m recent --rcheck --name STAGE1 -j STAGE2
20 -A INPUT -p tcp --dport 10002 -m recent --rcheck --name STAGE2 -j STAGE3
21 -A INPUT -p tcp --dport 10003 -m recent --rcheck --name STAGE3 -j STAGE4
22

23 -A INPUT -p tcp --dport 22 -m recent --rcheck --seconds 30 --name STAGE4 -j ACCEPT

5.1.2 Using the Portknock0 project iptables module

The PortKnock0 Project is composed of two parts: an iptables extension (user space) and a
net�lter extension (kernel space). Both modules are used to implement Port Knocking

Following the steps described at http://portknocko.berlios.de/README.html, one can
install PortKnock0. Once installed, it provides a new iptables module, using which portknocking
can be setup very easily.

Listing 27 demonstrates setting up the same con�g as shown earlier, with custom chains.

Listing 27: iptables rules to setup port knocking with PortKnock0

1 iptables -A INPUT \\ # append to chain INPUT
2 -p tcp \\ # tcp packets
3 -m state \\ # load module state
4 --state NEW \\ # only match NEW connections
5 -m pknock \\ # load module pknock
6 --knockports 10000,10001,10002,10003 \\# the ports for knocking
7 --name SSH \\ # name
8 --time 30 \\ # max. allowed time between knocks
9 --strict \\ # if the user fails one knock in the

sequence he/she must start over
10 -m tcp \\ # load module tcp
11 --dport 22 \\ # destination port 22 (SSH)
12 -j ACCEPT # ACCEPT if all matches are OK

The machine can then be accessed using telnet to knock the ports and then regular SSH (listing
28).

Listing 28: Accessing the machine

1 $ ssh user@someserver # won’t work
2

3 $ telnet someserver 10000 # first knock
4 $ telnet someserver 10001
5 $ telnet someserver 10002
6 $ telnet someserver 10003 # last knock
7

8 $ ssh user@someserver # will work now

5.2 Rate Limiting

iptables is commonly used for rate limiting, for bandwidth considerations. Rate limiting is also
used in various ways to secure the system, with iptables. Some of the relevant applications are as
described here.

25

http://portknocko.berlios.de/README.html

5.2.1 Protecting against ping �ood attacks

Here the limit module is used to keep check on the icmp echo-requests that are characteristic of
ping. The following rules setup reasonably tight ping �ood protection :

Listing 29: iptables rules to protect against a ping �ood attack

1 -A INPUT -p icmp --icmp-type echo-request -m limit --limit 60/minute --limit-burst
2 120 -j ACCEPT
3 -A INPUT -p icmp --icmp-type echo-request -m limit --limit 1/minute --limit-burst 2
4 -j LOG
5 -A INPUT -p icmp --icmp-type echo-request -j DROP

5.3 Connection Limiting

Connection limiting also has various uses. The connlimit module is used for connection limiting.

5.3.1 Limiting the number of SSH connections from a host (in parallel)

Often it is required to restrict the number of parallel ssh connections a user can make, to the
server. This can be e�ectively accomplished using iptables.

Listing 30: iptables rules to limit parallel SSH connections to 4 with logging

1 -A INPUT -p tcp --syn --dport 22 -m connlimit --connlimit-above 4 -m limit --limit
2 1/minute --limit-burst 2 -j LOG
3 -A INPUT -p tcp --syn --dport 22 -m connlimit --connlimit-above 4 -j REJECT

5.3.2 Bruteforce attack protection

This can be done by not allowing more than a speci�ed number of connections, over a speci�c
time interval, from any IP.

For example, in listing we have con�gured things so as to not allow more then 10 connection
attempts within 60 seconds from any IP.

Listing 31: iptables rules to prevent more than 10 connections within 60 seconds from any IP

1 -A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -m recent --name ssh_limit
2 --set
3 -A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -m recent --name ssh_limit
4 --rcheck --seconds 60 --hitcount 10 -m limit --limit 1/minute --limit-burst 2 -j LOG
5 -A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -m recent --name ssh_limit
6 --rcheck --seconds 60 --hitcount 10 -j REJECT --reject-with icmp-host-prohibited

6 iptables at IIIT-H

IIIT-H Servers use iptables as their �rewall mechanism. Most servers that interface with the
outside world have iptables con�gured quite thoroughly. However, after some analysis of the
con�guration, certain improvements and optimizations can be suggested.

26

6.1 Suggestions for Optimization and Improvement

6.1.1 Optimizing iptables by creating user-de�ned chains

iptables allows for very complex and lengthy rulesets. Improper rule structure can lead to ine�-
ciency in your packet �ltering system which can in turn decrease e�ective bandwidth and serving
capabilities. It is important that you carefully consider the order and structure of your packet
�lter layout.

The ultimate goal of packet �ltering is to control and limit tra�c to only that which you desire
to accept, send, and forward. The secondary goal is to get each packet out of iptables as soon as
possible by placing the packet on an ACCEPT or DROP target. While secondary, ine�ciencies in
your iptables structure can render the packet �ltering capabilities useless as e�ectively throttling
your bandwidth.

iptables allows you to create your own chains and add them as targets from rules on other (in-
cluding the default set of) chains. This allows us to create a shallow, wide decision tree instead
of a deep and narrow. While keeping in mind that if a packet gets incorrectly �ltered, the whole
system is useless, the shallower a decision tree, the faster the packets will be �ltered.

Figure 6: Deep, Narrow Chain decision tree

The chains whose decision trees are shown in �gures 6 and 7 accomplish the exact same thing.
However, the second one is more e�cient.

6.1.2 Reordering rules based on counters

In a chain, we must always try to place the hottest rules at the top. What this means is, the rules
which have the maximum likelihood of being matched, overall, should come �rst, and so on.

This ensures that each time a new packet is analyzed, the chances of it reaching the lower ends of
the chain are less. This improves e�ciency.

One standard method of �nding out whether to re-think your sequence of rules is to check the
hit counters that iptables maintains, using iptables -L -n -v and push the rules with higher

27

Figure 7: Shallower, Wider Chain decision tree

counts towards the top.

6.1.3 Logging and Dropping/Accepting with a single rule

As described earlier, in Subsubsection 3.5.6, we can add custom chains to reduce the amount of
processing for packets that have to be logged and accepted/dropped.

28

7 Man Pages

The rest of this document contains the man-pages which are relevant to the text. Kindly consult
them for reference.

The included man-pages are:

• iptables

• iptables-save

• iptables-restore

29

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

NAME
iptables — administration tool for IPv4 packet filtering and NAT

SYNOPSIS
iptables [−t table] { −A|−D} chain rule-specification

iptables [−t table] −I chain [rulenum] rule-specification

iptables [−t table] −R chain rulenum rule-specification

iptables [−t table] −D chain rulenum

iptables [−t table] −S [chain [rulenum]]

iptables [−t table] { −F|−L |−Z} [chain [rulenum]] [options...]

iptables [−t table] −N chain

iptables [−t table] −X [chain]

iptables [−t table] −P chain target

iptables [−t table] −E old-chain-name new-chain-name

rule-specification = [matches...] [target]

match =−m matchname[per-match-options]

target =−j targetname[per−target−options]

DESCRIPTION
Iptables is used to set up, maintain, and inspect the tables of IPv4 packet filter rules in the Linux kernel.
Several different tables may be defined. Each table contains a number of built-in chains and may also con-
tain user-defined chains.

Each chain is a list of rules which can match a set of packets. Eachrule specifies what to do with a packet
that matches. This is called a ‘target’, which may be a jump to a user-defined chain in the same table.

TARGETS
A firewall rule specifies criteria for a packet and a target. If the packet does not match, the next rule in the
chain is the examined; if it does match, then the next rule is specified by the value of the target, which can
be the name of a user-defined chain or one of the special valuesACCEPT, DROP, QUEUE or RETURN.

ACCEPT means to let the packet through.DROP means to drop the packet on the floor. QUEUE means
to pass the packet to userspace.(How the packet can be received by a userspace process differs by the par-
ticular queue handler. 2.4.x and 2.6.x kernels up to 2.6.13 include theip_queuequeue handler. Kernels
2.6.14 and later additionally include thenfnetlink_queue queue handler. Packets with a target of QUEUE
will be sent to queue number ’0’ in this case. Please also see theNFQUEUE target as described later in this
man page.)RETURN means stop traversing this chain and resume at the next rule in the previous (calling)
chain. Ifthe end of a built-in chain is reached or a rule in a built-in chain with targetRETURN is matched,
the target specified by the chain policy determines the fate of the packet.

TABLES
There are currently three independent tables (which tables are present at any time depends on the kernel
configuration options and which modules are present).

−t, −−table table
This option specifies the packet matching table which the command should operate on. If the ker-
nel is configured with automatic module loading, an attempt will be made to load the appropriate
module for that table if it is not already there.

The tables are as follows:

filter : This is the default table (if no −t option is passed). It contains the built-in chainsINPUT
(for packets destined to local sockets),FORWARD (for packets being routed through the
box), andOUTPUT (for locally-generated packets).

iptables 1.4.10 1

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

nat: This table is consulted when a packet that creates a new connection is encountered. It con-
sists of three built-ins: PREROUTING (for altering packets as soon as they come in),
OUTPUT (for altering locally-generated packets before routing), andPOSTROUTING
(for altering packets as they are about to go out).

mangle:
This table is used for specialized packet alteration. Until kernel 2.4.17 it had two built-in
chains:PREROUTING (for altering incoming packets before routing) andOUTPUT (for
altering locally-generated packets before routing). Since kernel 2.4.18, three other built-in
chains are also supported:INPUT (for packets coming into the box itself),FORWARD
(for altering packets being routed through the box), andPOSTROUTING (for altering
packets as they are about to go out).

raw: This table is used mainly for configuring exemptions from connection tracking in combina-
tion with the NOTRACK target. Itregisters at the netfilter hooks with higher priority and is
thus called before ip_conntrack, or any other IP tables. It provides the following built-in
chains:PREROUTING (for packets arriving via any network interface)OUTPUT (for
packets generated by local processes)

OPTIONS
The options that are recognized byiptablescan be divided into several different groups.

COMMANDS
These options specify the desired action to perform. Only one of them can be specified on the command
line unless otherwise stated below. For long versions of the command and option names, you need to use
only enough letters to ensure thatiptablescan differentiate it from all other options.

−A, −−appendchain rule-specification
Append one or more rules to the end of the selected chain. When the source and/or destination
names resolve to more than one address, a rule will be added for each possible address combina-
tion.

−D, −−deletechain rule-specification
−D, −−deletechain rulenum

Delete one or more rules from the selected chain. There are two versions of this command: the
rule can be specified as a number in the chain (starting at 1 for the first rule) or a rule to match.

−I , −−insert chain [rulenum] rule-specification
Insert one or more rules in the selected chain as the given rule number. So, if the rule number is 1,
the rule or rules are inserted at the head of the chain.This is also the default if no rule number is
specified.

−R, −−replacechain rulenum rule-specification
Replace a rule in the selected chain. If the source and/or destination names resolve to multiple
addresses, the command will fail. Rulesare numbered starting at 1.

−L , −−list [chain]
List all rules in the selected chain. If no chain is selected, all chains are listed. Like every other
iptables command, it applies to the specified table (filter is the default), so NAT rules get listed by
iptables −t nat −n −L
Please note that it is often used with the−n option, in order to avoid long reverse DNS lookups.It
is legal to specify the−Z (zero) option as well, in which case the chain(s) will be atomically listed
and zeroed. The exact output is affected by the other arguments given. The exact rules are sup-
pressed until you use
iptables −L −v

−S, −−list−rules [chain]
Print all rules in the selected chain.If no chain is selected, all chains are printed like iptables-save.
Like every other iptables command, it applies to the specified table (filter is the default).

iptables 1.4.10 2

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−F, −−flush [chain]
Flush the selected chain (all the chains in the table if none is given). Thisis equivalent to deleting
all the rules one by one.

−Z, −−zero [chain [rulenum]]
Zero the packet and byte counters in all chains, or only the given chain, or only the given rule in a
chain. It is legal to specify the−L , −−list (list) option as well, to see the counters immediately
before they are cleared. (See above.)

−N, −−new−chainchain
Create a new user-defined chain by the given name. Theremust be no target of that name already.

−X, −−delete−chain[chain]
Delete the optional user-defined chain specified.There must be no references to the chain.If
there are, you must delete or replace the referring rules before the chain can be deleted.The chain
must be empty, i.e. not contain any rules. If no argument is given, it will attempt to delete every
non-builtin chain in the table.

−P, −−policy chain target
Set the policy for the chain to the given target. Seethe sectionTARGETS for the legal targets.
Only built-in (non-user-defined) chains can have policies, and neither built-in nor user-defined
chains can be policy targets.

−E, −−rename−chainold−chain new−chain
Rename the user specified chain to the user supplied name.This is cosmetic, and has no effect on
the structure of the table.

−h Help. Give a (currently very brief) description of the command syntax.

PARAMETERS
The following parameters make up a rule specification (as used in the add, delete, insert, replace and
append commands).

[!] −p, −−protocol protocol
The protocol of the rule or of the packet to check. The specified protocol can be one oftcp, udp,
udplite, icmp, esp, ah, sctp or all, or it can be a numeric value, representing one of these proto-
cols or a different one.A protocol name from /etc/protocols is also allowed. A "!" argument
before the protocol inverts the test. The number zero is equivalent toall. Protocolall will match
with all protocols and is taken as default when this option is omitted.

[!] −s, −−sourceaddress[/mask][,...]
Source specification.Addresscan be either a network name, a hostname, a network IP address
(with /mask), or a plain IP address. Hostnames will be resolved once only, before the rule is sub-
mitted to the kernel. Pleasenote that specifying any name to be resolved with a remote query such
as DNS is a really bad idea.Themaskcan be either a network mask or a plain number, specifying
the number of 1’s at the left side of the network mask. Thus, a mask of24 is equivalent to
255.255.255.0. A "!" argument before the address specification inverts the sense of the address.
The flag−−src is an alias for this option. Multiple addresses can be specified, but this willexpand
to multiple rules (when adding with −A), or will cause multiple rules to be deleted (with −D).

[!] −d, −−destinationaddress[/mask][,...]
Destination specification. See the description of the−s (source) flag for a detailed description of
the syntax. The flag−−dst is an alias for this option.

−j , −−jump target
This specifies the target of the rule; i.e., what to do if the packet matches it. The target can be a
user-defined chain (other than the one this rule is in), one of the special builtin targets which
decide the fate of the packet immediately, or an extension (seeEXTENSIONS below). If this
option is omitted in a rule (and−g is not used), then matching the rule will have no effect on the
packet’s fate, but the counters on the rule will be incremented.

iptables 1.4.10 3

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−g, −−gotochain
This specifies that the processing should continue in a user specified chain. Unlike the −−jump
option return will not continue processing in this chain but instead in the chain that called us via
−−jump.

[!] −i, −−in−interface name
Name of an interface via which a packet was received (only for packets entering theINPUT ,
FORWARD and PREROUTING chains). Whenthe "!" argument is used before the interface
name, the sense is inverted. If the interface name ends in a "+", then any interface which begins
with this name will match. If this option is omitted, any interface name will match.

[!] −o, −−out−interface name
Name of an interface via which a packet is going to be sent (for packets entering theFORWARD,
OUTPUT and POSTROUTING chains). Whenthe "!" argument is used before the interface
name, the sense is inverted. If the interface name ends in a "+", then any interface which begins
with this name will match. If this option is omitted, any interface name will match.

[!] −f, −−fragment
This means that the rule only refers to second and further fragments of fragmented packets. Since
there is no way to tell the source or destination ports of such a packet (or ICMP type), such a
packet will not match any rules which specify them.When the "!" argument precedes the "−f"
flag, the rule will only match head fragments, or unfragmented packets.

−c, −−set−counterspackets bytes
This enables the administrator to initialize the packet and byte counters of a rule (duringINSERT,
APPEND, REPLACE operations).

OTHER OPTIONS
The following additional options can be specified:

−v, −−verbose
Verbose output. This option makes the list command show the interface name, the rule options (if
any), and the TOS masks. The packet and byte counters are also listed, with the suffix ’K’, ’M’ or
’G’ for 1000, 1,000,000 and 1,000,000,000 multipliers respectively (but see the−x flag to change
this). For appending, insertion, deletion and replacement, this causes detailed information on the
rule or rules to be printed.

−n, −−numeric
Numeric output. IP addresses and port numbers will be printed in numeric format.By default, the
program will try to display them as host names, network names, or services (whenever applicable).

−x, −−exact
Expand numbers. Display the exact value of the packet and byte counters, instead of only the
rounded number in K’s (multiples of 1000) M’s (multiples of 1000K) or G’s (multiples of 1000M).
This option is only relevant for the−L command.

−−line−numbers
When listing rules, add line numbers to the beginning of each rule, corresponding to that rule’s
position in the chain.

−−modprobe=command
When adding or inserting rules into a chain, usecommandto load any necessary modules (targets,
match extensions, etc).

MATCH EXTENSIONS
iptables can use extended packet matching modules. These are loaded in two ways: implicitly, when−p or
−−protocol is specified, or with the−m or −−match options, followed by the matching module name; after
these, various extra command line options become available, depending on the specific module.You can
specify multiple extended match modules in one line, and you can use the−h or −−help options after the
module has been specified to receive help specific to that module.

The following are included in the base package, and most of these can be preceded by a "!" to inv ert the

iptables 1.4.10 4

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

sense of the match.

addrtype
This module matches packets based on theiraddress type.Address types are used within the kernel net-
working stack and categorize addresses into various groups. The exact definition of that group depends on
the specific layer three protocol.

The following address types are possible:

UNSPEC
an unspecified address (i.e. 0.0.0.0)

UNICAST
an unicast address

LOCAL
a local address

BROADCAST
a broadcast address

ANYCAST
an anycast packet

MULTICAST
a multicast address

BLACKHOLE
a blackhole address

UNREACHABLE
an unreachable address

PROHIBIT
a prohibited address

THROW
FIXME

NAT FIXME

XRESOLVE

[!] −−src−type type
Matches if the source address is of given type

[!] −−dst−type type
Matches if the destination address is of given type

−−limit−iface−in
The address type checking can be limited to the interface the packet is coming in. This option is
only valid in thePREROUTING , INPUT andFORWARD chains. It cannot be specified with the
−−limit−iface−out option.

−−limit−iface−out
The address type checking can be limited to the interface the packet is going out. This option is
only valid in thePOSTROUTING, OUTPUT and FORWARD chains. It cannot be specified
with the−−limit−iface−in option.

ah
This module matches the SPIs in Authentication header of IPsec packets.

[!] −−ahspispi[:spi]

cluster
Allows you to deploy gateway and back-end load-sharing clusters without the need of load-balancers.

This match requires that all the nodes see the same packets. Thus, the cluster match decides if this node has

iptables 1.4.10 5

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

to handle a packet given the following options:

−−cluster−total−nodesnum
Set number of total nodes in cluster.

[!] −−cluster−local−nodenum
Set the local node number ID.

[!] −−cluster−local−nodemaskmask
Set the local node number ID mask. You can use this option instead of−−cluster−local−node.

−−cluster−hash−seedvalue
Set seed value of the Jenkins hash.

Example:

iptables −A PREROUTING −t mangle −i eth1 −m cluster −−cluster−total−nodes 2 −−clus-
ter−local−node 1 −−cluster−hash−seed 0xdeadbeef −j MARK −−set-mark 0xffff

iptables −A PREROUTING −t mangle −i eth2 −m cluster −−cluster−total−nodes 2 −−clus-
ter−local−node 1 −−cluster−hash−seed 0xdeadbeef −j MARK -−set−mark 0xffff

iptables −A PREROUTING −t mangle −i eth1 −m mark ! −−mark 0xffff − j DROP

iptables −A PREROUTING −t mangle −i eth2 −m mark ! −−mark 0xffff − j DROP

And the following commands to make all nodes see the same packets:

ip maddr add 01:00:5e:00:01:01 dev eth1

ip maddr add 01:00:5e:00:01:02 dev eth2

arptables −A OUTPUT −o eth1 −−h−length 6 −j mangle −−mangle-mac-s 01:00:5e:00:01:01

arptables −A INPUT −i eth1 −−h-length 6 −−destination-mac 01:00:5e:00:01:01 −j mangle
−−mangle−mac−d 00:zz:yy:xx:5a:27

arptables −A OUTPUT −o eth2 −−h−length 6 −j mangle −−mangle−mac−s 01:00:5e:00:01:02

arptables −A INPUT −i eth2 −−h−length 6 −−destination−mac 01:00:5e:00:01:02 −j mangle
−−mangle−mac−d 00:zz:yy:xx:5a:27

In the case of TCP connections, pickup facility has to be disabled to avoid marking TCP ACK packets com-
ing in the reply direction as valid.

echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose

comment
Allows you to add comments (up to 256 characters) to any rule.

−−commentcomment

Example:
iptables −A INPUT −i eth1 −m comment −−comment "my local LAN"

connbytes
Match by how many bytes or packets a connection (or one of the two flows constituting the connection) has
transferred so far, or by average bytes per packet.

The counters are 64-bit and are thus not expected to overflow ;)

The primary use is to detect long-lived downloads and mark them to be scheduled using a lower priority
band in traffic control.

The transferred bytes per connection can also be viewed through ‘conntrack −L‘ and accessed via ctnetlink.

NOTE that for connections which have no accounting information, the match will always return false. The
"net.netfilter.nf_conntrack_acct" sysctl flag controls whethernew connections will be byte/packet counted.
Existing connection flows will not be gaining/losing a/the accounting structure when be sysctl flag is
flipped.

iptables 1.4.10 6

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−connbytesfrom[:to]
match packets from a connection whose packets/bytes/average packet size is more than FROM and
less than TO bytes/packets. if TO is omitted only FROM check is done. "!" is used to match pack-
ets not falling in the range.

−−connbytes−dir{ original |reply|both}
which packets to consider

−−connbytes−mode{ packets|bytes|avgpkt}
whether to check the amount of packets, number of bytes transferred or the average size (in bytes)
of all packets received so far. Note that when "both" is used together with "avgpkt", and data is
going (mainly) only in one direction (for example HTTP), the average packet size will be about
half of the actual data packets.

Example:
iptables .. −m connbytes −−connbytes 10000:100000 −−connbytes−dir both −−connbytes−mode
bytes ...

connlimit
Allows you to restrict the number of parallel connections to a server per client IP address (or client address
block).

[!] −−connlimit−aboven
Match if the number of existing connections is (not) aboven.

−−connlimit−mask prefix_length
Group hosts using the prefix length. For IPv4, this must be a number between (including) 0 and
32. For IPv6, between 0 and 128.

Examples:

allow 2 telnet connections per client host
iptables −A INPUT −p tcp −−syn −−dport 23 −m connlimit −−connlimit−above 2 −j REJECT

you can also match the other way around:
iptables −A INPUT −p tcp −−syn −−dport 23 −m connlimit ! −−connlimit−above 2 −j ACCEPT

limit the number of parallel HTTP requests to 16 per class C sized network (24 bit netmask)
iptables −p tcp −−syn −−dport 80 −m connlimit −−connlimit−above 16 −−connlimit−mask 24 −j
REJECT

limit the number of parallel HTTP requests to 16 for the link local network
(ipv6) ip6tables −p tcp −−syn −−dport 80 −s fe80::/64 −m connlimit −−connlimit−above 16
−−connlimit−mask 64 −j REJECT

connmark
This module matches the netfilter mark field associated with a connection (which can be set using the
CONNMARK target below).

[!] −−mark value[/mask]
Matches packets in connections with the given mark value (if a mask is specified, this is logically
ANDed with the mark before the comparison).

conntrack
This module, when combined with connection tracking, allows access to the connection tracking state for
this packet/connection.

[!] −−ctstatestatelist
statelist is a comma separated list of the connection states to match.Possible states are listed
below.

[!] −−ctproto l4proto
Layer-4 protocol to match (by number or name)

iptables 1.4.10 7

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−ctorigsrc address[/mask]

[!] −−ctorigdst address[/mask]

[!] −−ctreplsrc address[/mask]

[!] −−ctrepldst address[/mask]
Match against original/reply source/destination address

[!] −−ctorigsrcport port

[!] −−ctorigdstport port

[!] −−ctreplsrcport port

[!] −−ctrepldstport port
Match against original/reply source/destination port (TCP/UDP/etc.) or GRE key.

[!] −−ctstatusstatelist
statuslistis a comma separated list of the connection statuses to match. Possible statuses are listed
below.

[!] −−ctexpire time[:time]
Match remaining lifetime in seconds against given value or range of values (inclusive)

−−ctdir { ORIGINAL |REPLY }
Match packets that are flowing in the specified direction. If this flag is not specified at all, matches
packets in both directions.

States for−−ctstate:

INVALID
meaning that the packet is associated with no known connection

NEW meaning that the packet has started a new connection, or otherwise associated with a connection
which has not seen packets in both directions, and

ESTABLISHED
meaning that the packet is associated with a connection which has seen packets in both directions,

RELATED
meaning that the packet is starting a new connection, but is associated with an existing connection,
such as an FTP data transfer, or an ICMP error.

UNTRACKED
meaning that the packet is not tracked at all, which happens if you use the NOTRACK target in
raw table.

SNAT A virtual state, matching if the original source address differs from the reply destination.

DNAT A virtual state, matching if the original destination differs from the reply source.

Statuses for−−ctstatus:

NONE None of the below.

EXPECTED
This is an expected connection (i.e. a conntrack helper set it up)

SEEN_REPLY
Conntrack has seen packets in both directions.

ASSURED
Conntrack entry should never be early-expired.

CONFIRMED
Connection is confirmed: originating packet has left box.

iptables 1.4.10 8

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

cpu
[!] −−cpu number

Match cpu handling this packet. cpus are numbered from 0 to NR_CPUS-1 Can be used in combi-
nation with RPS (Remote Packet Steering) or multiqueue NICs to spread network traffic on differ-
ent queues.

Example:

iptables −t nat −A PREROUTING −p tcp −−dport 80 −m cpu −−cpu 0 −j REDIRECT −−to−port 8080

iptables −t nat −A PREROUTING −p tcp −−dport 80 −m cpu −−cpu 1 −j REDIRECT −−to−port 8081

Av ailable since Linux 2.6.36.

dccp
[!] −−source−port,−−sport port[:port]

[!] −−destination−port,−−dport port[:port]

[!] −−dccp−typesmask
Match when the DCCP packet type is one of ’mask’. ’mask’ is a comma-separated list of packet
types. Packet types are:REQUEST RESPONSE DAT A ACK DAT AACK CLOSEREQ
CLOSE RESET SYNC SYNCACK INVALID .

[!] −−dccp−optionnumber
Match if DCP option set.

dscp
This module matches the 6 bit DSCP field within the TOS field in the IP header. DSCP has superseded
TOS within the IETF.

[!] −−dscpvalue
Match against a numeric (decimal or hex) value [0-63].

[!] −−dscp−classclass
Match the DiffServ class. This value may be any of the BE, EF, AFxx or CSx classes. It will then
be converted into its according numeric value.

ecn
This allows you to match the ECN bits of the IPv4 and TCP header. ECN is the Explicit Congestion Notifi-
cation mechanism as specified in RFC3168

[!] −−ecn−tcp−cwr
This matches if the TCP ECN CWR (Congestion Window Received) bit is set.

[!] −−ecn−tcp−ece
This matches if the TCP ECN ECE (ECN Echo) bit is set.

[!] −−ecn−ip−ectnum
This matches a particular IPv4 ECT (ECN-Capable Transport). You have to specify a number
between ‘0’ and ‘3’.

esp
This module matches the SPIs in ESP header of IPsec packets.

[!] −−espspispi[:spi]

hashlimit
hashlimit uses hash buckets to express a rate limiting match (like the limit match) for a group of connec-
tions using asingle iptables rule. Grouping can be done per-hostgroup (source and/or destination address)
and/or per-port. It gives you the ability to express "N packets per time quantum per group":

matching on source host
"1000 packets per second for every host in 192.168.0.0/16"

iptables 1.4.10 9

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

matching on source port
"100 packets per second for every service of 192.168.1.1"

matching on subnet
"10000 packets per minute for every /28 subnet in 10.0.0.0/8"

A hash limit option (−−hashlimit−upto, −−hashlimit−above) and−−hashlimit−nameare required.

−−hashlimit−upto amount[/second|/minute|/hour|/day]
Match if the rate is below or equal to amount/quantum. It is specified as a number, with an
optional time quantum suffix; the default is 3/hour.

−−hashlimit−aboveamount[/second|/minute|/hour|/day]
Match if the rate is aboveamount/quantum.

−−hashlimit−burst amount
Maximum initial number of packets to match: this number gets recharged by one every time the
limit specified above is not reached, up to this number; the default is 5.

−−hashlimit−mode{ srcip|srcport|dstip|dstport} ,...
A comma-separated list of objects to take into consideration. If no −−hashlimit−mode option is
given, hashlimit acts like limit, but at the expensive of doing the hash housekeeping.

−−hashlimit−srcmaskprefix
When −−hashlimit−mode srcip is used, all source addresses encountered will be grouped accord-
ing to the given prefix length and the so-created subnet will be subject to hashlimit.prefixmust be
between (inclusive) 0 and 32. Note that −−hashlimit−srcmask 0 is basically doing the same thing
as not specifying srcip for −−hashlimit−mode, but is technically more expensive.

−−hashlimit−dstmaskprefix
Like −−hashlimit−srcmask, but for destination addresses.

−−hashlimit−name foo
The name for the /proc/net/ipt_hashlimit/foo entry.

−−hashlimit−htable−sizebuck ets
The number of buckets of the hash table

−−hashlimit−htable−maxentries
Maximum entries in the hash.

−−hashlimit−htable−expiremsec
After how many milliseconds do hash entries expire.

−−hashlimit−htable−gcinterval msec
How many milliseconds between garbage collection intervals.

helper
This module matches packets related to a specific conntrack-helper.

[!] −−helper string
Matches packets related to the specified conntrack-helper.

string can be "ftp" for packets related to a ftp-session on default port.For other ports append
−portnr to the value, ie. "ftp−2121".

Same rules apply for other conntrack-helpers.

icmp
This extension can be used if ‘−−protocol icmp’ is specified. It provides the following option:

[!] −−icmp−type { type[/code]|typename}
This allows specification of the ICMP type, which can be a numeric ICMP type, type/code pair, or
one of the ICMP type names shown by the command
iptables −p icmp −h

iptables 1.4.10 10

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

iprange
This matches on a given arbitrary range of IP addresses.

[!] −−src−rangefrom[−to]
Match source IP in the specified range.

[!] −−dst−rangefrom[−to]
Match destination IP in the specified range.

ipvs
Match IPVS connection properties.

[!] −−ipvs
packet belongs to an IPVS connection

Any of the following options implies −−ipvs (even neg ated)

[!] −−vproto protocol
VIP protocol to match; by number or name, e.g. "tcp"

[!] −−vaddr address[/mask]
VIP address to match

[!] −−vport port
VIP port to match; by number or name, e.g. "http"

−−vdir { ORIGINAL |REPLY }
flow direction of packet

[!] −−vmethod { GATE |IPIP |MASQ}
IPVS forwarding method used

[!] −−vportctl port
VIP port of the controlling connection to match, e.g. 21 for FTP

length
This module matches the length of the layer-3 payload (e.g. layer-4 packet) of a packet against a specific
value or range of values.

[!] −−length length[:length]

limit
This module matches at a limited rate using a token bucket filter. A rule using this extension will match
until this limit is reached (unless the ‘!’ flag is used). It can be used in combination with theLOG target to
give limited logging, for example.

−−limit rate[/second|/minute|/hour|/day]
Maximum average matching rate: specified as a number, with an optional ‘/second’, ‘/minute’,
‘/hour’, or ‘/day’ suffix; the default is 3/hour.

−−limit−burst number
Maximum initial number of packets to match: this number gets recharged by one every time the
limit specified above is not reached, up to this number; the default is 5.

mac
[!] −−mac−sourceaddress

Match source MAC address. Itmust be of the form XX:XX:XX:XX:XX:XX. Note that this only
makes sense for packets coming from an Ethernet device and entering thePREROUTING , FOR-
WARD or INPUT chains.

mark
This module matches the netfilter mark field associated with a packet (which can be set using theMARK
target below).

iptables 1.4.10 11

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−mark value[/mask]
Matches packets with the given unsigned mark value (if amask is specified, this is logically
ANDed with themaskbefore the comparison).

multiport
This module matches a set of source or destination ports.Up to 15 ports can be specified.A port range
(port:port) counts as two ports. Itcan only be used in conjunction with−p tcp or −p udp.

[!] −−source−ports,−−sportsport[,port|,port:port]...
Match if the source port is one of the given ports. Theflag −−sports is a convenient alias for this
option. Multiple ports or port ranges are separated using a comma, and a port range is specified
using a colon.53,1024:65535would therefore match ports 53 and all from 1024 through 65535.

[!] −−destination−ports,−−dports port[,port|,port:port]...
Match if the destination port is one of the given ports. Theflag −−dports is a convenient alias for
this option.

[!] −−ports port[,port|,port:port]...
Match if either the source or destination ports are equal to one of the given ports.

osf
The osf module does passive operating system fingerprinting. This modules compares some data (Window
Size, MSS, options and their order, TTL, DF, and others) from packets with the SYN bit set.

[!] −−genrestring
Match an operating system genre by using a passive fingerprinting.

−−ttl level
Do additional TTL checks on the packet to determine the operating system.level can be one of
the following values:

• 0 - True IP address and fingerprint TTL comparison. This generally works for LANs.

• 1 - Check if the IP header’s TTL is less than the fingerprint one. Works for globally-routable
addresses.

• 2 - Do not compare the TTL at all.

−−log level
Log determined genres into dmesg even if they do not match the desired one.levelcan be one of the
following values:

• 0 - Log all matched or unknown signatures

• 1 - Log only the first one

• 2 - Log all known matched signatures

You may find something like this in syslog:

Windows [2000:SP3:Windows XP Pro SP1, 2000 SP3]: 11.22.33.55:4024 -> 11.22.33.44:139 hops=3
Linux [2.5-2.6:] : 1.2.3.4:42624 -> 1.2.3.5:22 hops=4

OS fingerprints are loadable using thenfnl_osf program. To load fingerprints from a file, use:

nfnl_osf -f /usr/share/xtables/pf.os

To remove them again,

nfnl_osf -f /usr/share/xtables/pf.os -d

The fingerprint database can be downlaoded from http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os .

owner
This module attempts to match various characteristics of the packet creator, for locally generated packets.
This match is only valid in the OUTPUT and POSTROUTING chains. Forwarded packets do not have any
socket associated with them. Packets from kernel threads do have a socket, but usually no owner.

iptables 1.4.10 12

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−uid−owner username

[!] −−uid−owner userid[−userid]
Matches if the packet socket’s file structure (if it has one) is owned by the given user. You may
also specify a numerical UID, or an UID range.

[!] −−gid−owner groupname

[!] −−gid−owner groupid[−groupid]
Matches if the packet socket’s file structure is owned by the given group. You may also specify a
numerical GID, or a GID range.

[!] −−socket−exists
Matches if the packet is associated with a socket.

physdev
This module matches on the bridge port input and output devices enslaved to a bridge device. This module
is a part of the infrastructure that enables a transparent bridging IP firewall and is only useful for kernel ver-
sions above version 2.5.44.

[!] −−physdev−inname
Name of a bridge port via which a packet is received (only for packets entering theINPUT , FOR-
WARD andPREROUTING chains). If the interface name ends in a "+", then any interface which
begins with this name will match. If the packet didn’t arrive through a bridge device, this packet
won’t match this option, unless ’!’ is used.

[!] −−physdev−outname
Name of a bridge port via which a packet is going to be sent (for packets entering theFOR-
WARD, OUTPUT andPOSTROUTING chains). Ifthe interface name ends in a "+", then any
interface which begins with this name will match. Note that in thenat and mangle OUTPUT
chains one cannot match on the bridge output port, however one can in thefilter OUTPUT chain.
If the packet won’t leave by a bridge device or if it is yet unknown what the output device will be,
then the packet won’t match this option, unless ’!’ is used.

[!] −−physdev−is−in
Matches if the packet has entered through a bridge interface.

[!] −−physdev−is−out
Matches if the packet will leave through a bridge interface.

[!] −−physdev−is−bridged
Matches if the packet is being bridged and therefore is not being routed. This is only useful in the
FORWARD and POSTROUTING chains.

pkttype
This module matches the link-layer packet type.

[!] −−pkt−type { unicast|broadcast|multicast}

policy
This modules matches the policy used by IPsec for handling a packet.

−−dir { in|out}
Used to select whether to match the policy used for decapsulation or the policy that will be used
for encapsulation.in is valid in thePREROUTING, INPUT and FORWARD chains,out is
valid in thePOSTROUTING, OUTPUT and FORWARD chains.

−−pol { none|ipsec}
Matches if the packet is subject to IPsec processing.

−−strict
Selects whether to match the exact policy or match if any rule of the policy matches the given pol-
icy.

iptables 1.4.10 13

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−reqid id
Matches the reqid of the policy rule. The reqid can be specified withsetkey(8)usingunique:id as
level.

[!] −−spi spi
Matches the SPI of the SA.

[!] −−proto { ah|esp|ipcomp}
Matches the encapsulation protocol.

[!] −−mode{ tunnel|transport }
Matches the encapsulation mode.

[!] −−tunnel−src addr[/mask]
Matches the source end-point address of a tunnel mode SA. Only valid with−−mode tunnel.

[!] −−tunnel−dst addr[/mask]
Matches the destination end-point address of a tunnel mode SA. Only valid with−−mode tunnel.

−−next Start the next element in the policy specification. Can only be used with−−strict.

quota
Implements network quotas by decrementing a byte counter with each packet.

[!] −−quota bytes
The quota in bytes.

rateest
The rate estimator can match on estimated rates as collected by the RATEEST target. It supports matching
on absolute bps/pps values, comparing two rate estimators and matching on the difference between two rate
estimators.

−−rateest1name
Name of the first rate estimator.

−−rateest2name
Name of the second rate estimator (if difference is to be calculated).

−−rateest−delta
Compare difference(s) to given rate(s)

−−rateest−bps1value

−−rateest−bps2value
Compare bytes per second.

−−rateest−pps1value

−−rateest−pps2value
Compare packets per second.

[!] −−rateest−lt
Match if rate is less than given rate/estimator.

[!] −−rateest−gt
Match if rate is greater than given rate/estimator.

[!] −−rateest−eq
Match if rate is equal to given rate/estimator.

Example: This is what can be used to route outgoing data connections from an FTP server over two lines
based on the available bandwidth at the time the data connection was started:

Estimate outgoing rates

iptables −t mangle −A POSTROUTING −o eth0 −j RATEEST −−rateest−name eth0 −−rateest−interval
250ms −−rateest−ewma 0.5s

iptables 1.4.10 14

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

iptables −t mangle −A POSTROUTING −o ppp0 −j RATEEST −−rateest−name ppp0 −−rateest−interval
250ms −−rateest−ewma 0.5s

Mark based on available bandwidth

iptables −t mangle −A balance −m conntrack −−ctstate NEW −m helper −−helper ftp −m rateest
−−rateest−delta −−rateest1 eth0 −−rateest−bps1 2.5mbit −−rateest−gt −−rateest2 ppp0 −−rateest−bps2
2mbit −j CONNMARK −−set−mark 1

iptables −t mangle −A balance −m conntrack −−ctstate NEW −m helper −−helper ftp −m rateest
−−rateest−delta −−rateest1 ppp0 −−rateest−bps1 2mbit −−rateest−gt −−rateest2 eth0 −−rateest−bps2
2.5mbit −j CONNMARK −−set−mark 2

iptables −t mangle −A balance −j CONNMARK −−restore−mark

realm
This matches the routing realm. Routing realms are used in complex routing setups involving dynamic
routing protocols like BGP.

[!] −−realm value[/mask]
Matches a given realm number (and optionally mask). If not a number, value can be a named
realm from /etc/iproute2/rt_realms (mask can not be used in that case).

recent
Allows you to dynamically create a list of IP addresses and then match against that list in a few different
ways.

For example, you can create a "badguy" list out of people attempting to connect to port 139 on your firewall
and then DROP all future packets from them without considering them.

−−set, −−rcheck, −−updateand−−removeare mutually exclusive.

−−namename
Specify the list to use for the commands. If no name is given thenDEFAULT will be used.

[!] −−set
This will add the source address of the packet to the list. If the source address is already in the list,
this will update the existing entry. This will always return success (or failure if! is passed in).

−−rsource
Match/save the source address of each packet in the recent list table. This is the default.

−−rdest
Match/save the destination address of each packet in the recent list table.

[!] −−rcheck
Check if the source address of the packet is currently in the list.

[!] −−update
Like −−rcheck, except it will update the "last seen" timestamp if it matches.

[!] −−remove
Check if the source address of the packet is currently in the list and if so that address will be
removed from the list and the rule will return true. If the address is not found, false is returned.

−−secondsseconds
This option must be used in conjunction with one of−−rcheck or −−update. When used, this will
narrow the match to only happen when the address is in the list and was seen within the last given
number of seconds.

−−hitcount hits
This option must be used in conjunction with one of−−rcheck or −−update. When used, this will
narrow the match to only happen when the address is in the list and packets had been received
greater than or equal to the given value. This option may be used along with−−secondsto create
an even narrower match requiring a certain number of hits within a specific time frame. The

iptables 1.4.10 15

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

maximum value for the hitcount parameter is given by the "ip_pkt_list_tot" parameter of the
xt_recent kernel module. Exceeding this value on the command line will cause the rule to be
rejected.

−−rttl This option may only be used in conjunction with one of−−rcheck or −−update. When used, this
will narrow the match to only happen when the address is in the list and the TTL of the current
packet matches that of the packet which hit the−−set rule. This may be useful if you have prob-
lems with people faking their source address in order to DoS you via this module by disallowing
others access to your site by sending bogus packets to you.

Examples:

iptables −A FORWARD −m recent −−name badguy −−rcheck −−seconds 60 −j DROP

iptables −A FORWARD −p tcp −i eth0 −−dport 139 −m recent −−name badguy −−set −j DROP

Steve’s ipt_recent website (http://snowman.net/projects/ipt_recent/) also has some examples of usage.

/proc/net/xt_recent/* are the current lists of addresses and information about each entry of each list.

Each file in/proc/net/xt_recent/can be read from to see the current list or written two using the following
commands to modify the list:

echo +addr>/proc/net/xt_recent/DEFAULT
to addaddr to the DEFAULT list

echo −addr>/proc/net/xt_recent/DEFAULT
to removeaddr from the DEFAULT list

echo / >/proc/net/xt_recent/DEFAULT
to flush the DEFAULT list (remove all entries).

The module itself accepts parameters, defaults shown:

ip_list_tot=100
Number of addresses remembered per table.

ip_pkt_list_tot=20
Number of packets per address remembered.

ip_list_hash_size=0
Hash table size. 0 means to calculate it based on ip_list_tot, default: 512.

ip_list_perms=0644
Permissions for /proc/net/xt_recent/* files.

ip_list_uid=0
Numerical UID for ownership of /proc/net/xt_recent/* files.

ip_list_gid=0
Numerical GID for ownership of /proc/net/xt_recent/* files.

sctp
[!] −−source−port,−−sport port[:port]

[!] −−destination−port,−−dport port[:port]

[!] −−chunk−types{ all|any|only} chunktype[:flags] [...]
The flag letter in upper case indicates that the flag is to match if set, in the lower case indicates to
match if unset.

Chunk types: DAT A INIT INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK ABORT SHUT-
DOWN SHUTDOWN_ACK ERROR COOKIE_ECHO COOKIE_ACK ECN_ECNE ECN_CWR
SHUTDOWN_COMPLETE ASCONF ASCONF_ACK FORWARD_TSN

chunk type available flags

iptables 1.4.10 16

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

DATA I U B E i u b e
ABORT T t
SHUTDOWN_COMPLETE Tt

(lowercase means flag should be "off", uppercase means "on")

Examples:

iptables −A INPUT −p sctp −−dport 80 −j DROP

iptables −A INPUT −p sctp −−chunk−types any DAT A,INIT −j DROP

iptables −A INPUT −p sctp −−chunk−types any DAT A:Be −j ACCEPT

set
This module matches IP sets which can be defined by ipset(8).

[!] −−match−setsetname flag[,flag]...
where flags are the comma separated list ofsrc and/ordst specifications and there can be no more
than six of them. Hence the command

iptables −A FORWARD −m set −−match−set test src,dst

will match packets, for which (if the set type is ipportmap) the source address and destination port
pair can be found in the specified set. If the set type of the specified set is single dimension (for
example ipmap), then the command will match packets for which the source address can be found
in the specified set.

The option−−match−setcan be replaced by−−setif that does not clash with an option of other extensions.

Use of -m set requires that ipset kernel support is provided. As standard kernels do not ship this currently,
the ipset or Xtables-addons package needs to be installed.

socket
This matches if an open socket can be found by doing a socket lookup on the packet.

state
This module, when combined with connection tracking, allows access to the connection tracking state for
this packet.

[!] −−statestate
Where state is a comma separated list of the connection states to match. Possible states are
INVALID meaning that the packet could not be identified for some reason which includes running
out of memory and ICMP errors which don’t correspond to any known connection,ESTAB-
LISHED meaning that the packet is associated with a connection which has seen packets in both
directions,NEW meaning that the packet has started a new connection, or otherwise associated
with a connection which has not seen packets in both directions, andRELATED meaning that the
packet is starting a new connection, but is associated with an existing connection, such as an FTP
data transfer, or an ICMP error. UNTRACKED meaning that the packet is not tracked at all,
which happens if you use the NOTRACK target in raw table.

statistic
This module matches packets based on some statistic condition. It supports two distinct modes settable
with the−−modeoption.

Supported options:

−−modemode
Set the matching mode of the matching rule, supported modes arerandom andnth.

−−probability p
Set the probability from 0 to 1 for a packet to be randomly matched. It works only with theran-
dom mode.

iptables 1.4.10 17

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−every n
Match one packet every nth packet. It works only with thenth mode (see also the−−packet
option).

−−packetp
Set the initial counter value (0 <= p <= n−1, default 0) for thenth mode.

string
This modules matches a given string by using some pattern matching strategy. It requires a linux kernel >=
2.6.14.

−−algo { bm|kmp}
Select the pattern matching strategy. (bm = Boyer-Moore, kmp = Knuth-Pratt-Morris)

−−from offset
Set the offset from which it starts looking for any matching. If not passed, default is 0.

−−to offset
Set the offset up to which should be scanned. That is, byteoffset-1 (counting from 0) is the last one
that is scanned. If not passed, default is the packet size.

[!] −−string pattern
Matches the given pattern.

[!] −−hex−string pattern
Matches the given pattern in hex notation.

tcp
These extensions can be used if ‘−−protocol tcp’ is specified. It provides the following options:

[!] −−source−port,−−sport port[:port]
Source port or port range specification. This can either be a service name or a port number. An
inclusive range can also be specified, using the formatfirst:last. If the first port is omitted, "0" is
assumed; if the last is omitted, "65535" is assumed.If the first port is greater than the second one
they will be swapped. Theflag−−sport is a convenient alias for this option.

[!] −−destination−port,−−dport port[:port]
Destination port or port range specification. The flag−−dport is a convenient alias for this option.

[!] −−tcp−flagsmask comp
Match when the TCP flags are as specified. The first argumentmaskis the flags which we should
examine, written as a comma-separated list, and the second argumentcompis a comma-separated
list of flags which must be set. Flags are:SYN ACK FIN RST URG PSH ALL NONE . Hence
the command
iptables −A FORWARD −p tcp −−tcp−flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN and RST flags unset.

[!] −−syn
Only match TCP packets with the SYN bit set and the ACK,RST and FIN bits cleared.Such
packets are used to request TCP connection initiation; for example, blocking such packets coming
in an interface will prevent incoming TCP connections, but outgoing TCP connections will be
unaffected. Itis equivalent to−−tcp−flags SYN,RST,ACK,FIN SYN . If the "!" flag precedes the
"−−syn", the sense of the option is inverted.

[!] −−tcp−option number
Match if TCP option set.

tcpmss
This matches the TCP MSS (maximum segment size) field of the TCP header. You can only use this on
TCP SYN or SYN/ACK packets, since the MSS is only negotiated during the TCP handshake at connection
startup time.

iptables 1.4.10 18

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−mssvalue[:value]
Match a given TCP MSS value or range.

time
This matches if the packet arrival time/date is within a given range. All options are optional, but are ANDed
when specified.

−−datestart YYYY[−MM[−DD[Thh[:mm[:ss]]]]]

−−datestopYYYY[−MM[−DD[Thh[:mm[:ss]]]]]

Only match during the given time, which must be in ISO 8601 "T" notation. The possible time
range is 1970-01-01T00:00:00 to 2038-01-19T04:17:07.

If −−datestart or −−datestop are not specified, it will default to 1970-01-01 and 2038-01-19,
respectively.

−−timestart hh:mm[:ss]

−−timestophh:mm[:ss]

Only match during the given daytime. The possible time range is 00:00:00 to 23:59:59. Leading
zeroes are allowed (e.g. "06:03") and correctly interpreted as base-10.

[!] −−monthdaysday[,day...]

Only match on the given days of the month. Possible values are1 to 31. Note that specifying31
will of course not match on months which do not have a 31st day; the same goes for 28- or 29-day
February.

[!] −−weekdaysday[,day...]

Only match on the given weekdays. Possible values areMon, Tue, Wed, Thu, Fri , Sat, Sun, or
values from1 to 7, respectively. You may also use two-character variants (Mo, Tu, etc.).

−−utc

Interpret the times given for −−datestart, −−datestop, −−timestart and−−timestop to be UTC.

−−localtz

Interpret the times given for −−datestart, −−datestop, −−timestart and−−timestop to be local
kernel time. (Default)

EXAMPLES. To match on weekends, use:

−m time −−weekdays Sa,Su

Or, to match (once) on a national holiday block:

−m time −−datestart 2007−12−24 −−datestop 2007−12−27

Since the stop time is actually inclusive, you would need the following stop time to not match the first sec-
ond of the new day:

−m time −−datestart 2007−01−01T17:00 −−datestop 2007−01−01T23:59:59

During lunch hour:

−m time −−timestart 12:30 −−timestop 13:30

The fourth Friday in the month:

−m time −−weekdays Fr −−monthdays 22,23,24,25,26,27,28

(Note that this exploits a certain mathematical property. It is not possible to say "fourth Thursday OR fourth
Friday" in one rule. It is possible with multiple rules, though.)

tos
This module matches the 8-bit Type of Service field in the IPv4 header (i.e. including the "Precedence"
bits) or the (also 8-bit) Priority field in the IPv6 header.

iptables 1.4.10 19

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

[!] −−tosvalue[/mask]
Matches packets with the given TOS mark value. If a mask is specified, it is logically ANDed with
the TOS mark before the comparison.

[!] −−tossymbol
You can specify a symbolic name when using the tos match for IPv4. The list of recognized TOS
names can be obtained by calling iptables with−m tos −h. Note that this implies a mask of 0x3F,
i.e. all but the ECN bits.

ttl
This module matches the time to live field in the IP header.

−−ttl−eq ttl
Matches the given TTL value.

−−ttl−gt ttl
Matches if TTL is greater than the given TTL value.

−−ttl−lt ttl
Matches if TTL is less than the given TTL value.

u32
U32 tests whether quantities of up to 4 bytes extracted from a packet have specified values. The specifica-
tion of what to extract is general enough to find data at given offsets from tcp headers or payloads.

[!] −−u32 tests
The argument amounts to a program in a small language described below.

tests := location "=" value | tests "&&" location "=" value

value := range | value "," range

range := number | number ":" number

a single number,n, is interpreted the same asn:n. n:m is interpreted as the range of numbers>=n and<=m.

location := number | location operator number

operator := "&" | "<<" | ">>" | "@"

The operators& , <<, >> and&& mean the same as in C.The = is really a set membership operator and
the value syntax describes a set. The@ operator is what allows moving to the next header and is described
further below.

There are currently some artificial implementation limits on the size of the tests:

* no more than 10 of "=" (and 9 "&& "s) in the u32 argument

* no more than 10 ranges (and 9 commas) per value

* no more than 10 numbers (and 9 operators) per location

To describe the meaning of location, imagine the following machine that interprets it. There are three regis-
ters:

A is of typechar *, initially the address of the IP header

B and C are unsigned 32 bit integers, initially zero

The instructions are:

number B = number;

C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)

&number C = C & number

<< number C = C << number

>> number C = C >> number

iptables 1.4.10 20

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

@number A = A + C; then do the instruction number

Any access of memory outside [skb−>data,skb−>end] causes the match to fail. Otherwisethe result of the
computation is the final value of C.

Whitespace is allowed but not required in the tests. However, the characters that do occur there are likely to
require shell quoting, so it is a good idea to enclose the arguments in quotes.

Example:

match IP packets with total length >= 256

The IP header contains a total length field in bytes 2-3.

−−u32 "0 & 0xFFFF = 0x100:0xFFFF"

read bytes 0-3

AND that with 0xFFFF (giving bytes 2-3), and test whether that is in the range [0x100:0xFFFF]

Example: (more realistic, hence more complicated)

match ICMP packets with icmp type 0

First test that it is an ICMP packet, true iff byte 9 (protocol) = 1

−−u32 "6 & 0xFF = 1 && ...

read bytes 6-9, use& to throw away bytes 6-8 and compare the result to 1. Next test that it is not a
fragment. (If so, it might be part of such a packet but we cannot always tell.) N.B.: This test is gen-
erally needed if you want to match anything beyond the IP header. The last 6 bits of byte 6 and all
of byte 7 are 0 iff this is a complete packet (not a fragment). Alternatively, you can allow first frag-
ments by only testing the last 5 bits of byte 6.

... 4 & 0x3FFF = 0 && ...

Last test: the first byte past the IP header (the type) is 0. This is where we have to use the @syntax.
The length of the IP header (IHL) in 32 bit words is stored in the right half of byte 0 of the IP
header itself.

... 0 >> 22 & 0x3C @ 0 >> 24 = 0"

The first 0 means read bytes 0-3,>>22means shift that 22 bits to the right. Shifting 24 bits would
give the first byte, so only 22 bits is four times that plus a few more bits.&3C then eliminates the
two extra bits on the right and the first four bits of the first byte. For instance, if IHL=5, then the IP
header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in binary) xxxx0101 yyzzzzzz,>>22
gives the 10 bit value xxxx0101yy and&3C gives 010100.@ means to use this number as a new
offset into the packet, and read four bytes starting from there. This is the first 4 bytes of the ICMP
payload, of which byte 0 is the ICMP type. Therefore, we simply shift the value 24 to the right to
throw out all but the first byte and compare the result with 0.

Example:

TCP payload bytes 8-12 is any of 1, 2, 5 or 8

First we test that the packet is a tcp packet (similar to ICMP).

−−u32 "6 & 0xFF = 6 && ...

Next, test that it is not a fragment (same as above).

... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"

0>>22&3C as above computes the number of bytes in the IP header. @ makes this the new offset
into the packet, which is the start of the TCP header. The length of the TCP header (again in 32 bit
words) is the left half of byte 12 of the TCP header. The 12>>26&3C computes this length in
bytes (similar to the IP header before). "@" makes this the new offset, which is the start of the
TCP payload. Finally, 8 reads bytes 8-12 of the payload and= checks whether the result is any of
1, 2, 5 or 8.

iptables 1.4.10 21

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

udp
These extensions can be used if ‘−−protocol udp’ is specified. It provides the following options:

[!] −−source−port,−−sport port[:port]
Source port or port range specification. See the description of the−−source−port option of the
TCP extension for details.

[!] −−destination−port,−−dport port[:port]
Destination port or port range specification.See the description of the−−destination−port option
of the TCP extension for details.

unclean
This module takes no options, but attempts to match packets which seem malformed or unusual. This is
regarded as experimental.

TARGET EXTENSIONS
iptables can use extended target modules: the following are included in the standard distribution.

CHECKSUM
This target allows to selectively work around broken/old applications. It can only be used in the mangle ta-
ble.

−−checksum−fill
Compute and fill in the checksum in a packet that lacks a checksum. This is particularly useful, if
you need to work around old applications such as dhcp clients, that do not work well with check-
sum offloads, but don’t want to disable checksum offload in your device.

CLASSIFY
This module allows you to set the skb−>priority value (and thus classify the packet into a specific CBQ
class).

−−set−classmajor:minor
Set the major and minor class value. The values are always interpreted as hexadecimal even if no
0x prefix is given.

CLUSTERIP
This module allows you to configure a simple cluster of nodes that share a certain IP and MAC address
without an explicit load balancer in front of them. Connections are statically distributed between the nodes
in this cluster.

−−new Create a new ClusterIP. You always have to set this on the first rule for a given ClusterIP.

−−hashmodemode
Specify the hashing mode.Has to be one ofsourceip, sourceip−sourceport, sourceip−source-
port−destport.

−−clustermacmac
Specify the ClusterIP MAC address. Has to be a link−layer multicast address

−−total−nodesnum
Number of total nodes within this cluster.

−−local−nodenum
Local node number within this cluster.

−−hash−init rnd
Specify the random seed used for hash initialization.

CONNMARK
This module sets the netfilter mark value associated with a connection. The mark is 32 bits wide.

−−set−xmark value[/mask]
Zero out the bits given by maskand XORvalueinto the ctmark.

iptables 1.4.10 22

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−save−mark [−−nfmask nfmask] [−−ctmaskctmask]
Copy the packet mark (nfmark) to the connection mark (ctmark) using the given masks. The new
nfmark value is determined as follows:

ctmark = (ctmark & ˜ctmask) ˆ (nfmark & nfmask)

i.e. ctmaskdefines what bits to clear andnfmaskwhat bits of the nfmark to XOR into the ctmark.
ctmaskandnfmaskdefault to 0xFFFFFFFF.

−−restore−mark [−−nfmask nfmask] [−−ctmaskctmask]
Copy the connection mark (ctmark) to the packet mark (nfmark) using the given masks. The new
ctmark value is determined as follows:

nfmark = (nfmark & ñfmask) ˆ (ctmark &ctmask);

i.e. nfmaskdefines what bits to clear andctmaskwhat bits of the ctmark to XOR into the nfmark.
ctmaskandnfmaskdefault to 0xFFFFFFFF.

−−restore−mark is only valid in themangletable.

The following mnemonics are available for−−set−xmark:

−−and−mark bits
Binary AND the ctmark withbits. (Mnemonic for−−set−xmark 0/invbits, where invbits is the
binary negation of bits.)

−−or−mark bits
Binary OR the ctmark withbits. (Mnemonic for−−set−xmark bits/bits.)

−−xor−mark bits
Binary XOR the ctmark withbits. (Mnemonic for−−set−xmark bits/0.)

−−set−mark value[/mask]
Set the connection mark. If a mask is specified then only those bits set in the mask are modified.

−−save−mark [−−maskmask]
Copy the nfmark to the ctmark. If a mask is specified, only those bits are copied.

−−restore−mark [−−maskmask]
Copy the ctmark to the nfmark. If a mask is specified, only those bits are copied. This is only valid
in themangletable.

CONNSECMARK
This module copies security markings from packets to connections (if unlabeled), and from connections
back to packets (also only if unlabeled).Typically used in conjunction with SECMARK, it is only valid in
themangletable.

−−save If the packet has a security marking, copy it to the connection if the connection is not marked.

−−restore
If the packet does not have a security marking, and the connection does, copy the security marking
from the connection to the packet.

CT
The CT target allows to set parameters for a packet or its associated connection. The target attaches a "tem-
plate" connection tracking entry to the packet, which is then used by the conntrack core when initializing a
new ct entry. This target is thus only valid in the "raw" table.

−−notrack
Disables connection tracking for this packet.

−−helper name
Use the helper identified bynamefor the connection. This is more flexible than loading the con-
ntrack helper modules with preset ports.

iptables 1.4.10 23

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−ctevents event[,...]
Only generate the specified conntrack events for this connection. Possible event types are:new,
related, destroy, reply, assured, protoinfo , helper, mark (this refers to the ctmark, not nfmark),
natseqinfo, secmark(ctsecmark).

−−expevents event[,...]
Only generate the specified expectation events for this connection. Possible event types are:new.

−−zoneid
Assign this packet to zoneid and only have lookups done in that zone.By default, packets have
zone 0.

DNAT
This target is only valid in thenat table, in thePREROUTING andOUTPUT chains, and user-defined
chains which are only called from those chains.It specifies that the destination address of the packet
should be modified (and all future packets in this connection will also be mangled), and rules should cease
being examined. Ittakes one type of option:

−−to−destination [ipaddr][−ipaddr][:port[−port]]
which can specify a single new destination IP address, an inclusive range of IP addresses, and
optionally, a port range (which is only valid if the rule also specifies−p tcp or −p udp). If no port
range is specified, then the destination port will never be modified. If no IP address is specified
then only the destination port will be modified.

In Kernels up to 2.6.10 you can add several −−to−destination options. For those kernels, if you
specify more than one destination address, either via an address range or multiple −−to−destina-
tion options, a simple round-robin (one after another in cycle) load balancing takes place between
these addresses. Later Kernels (>= 2.6.11-rc1) don’t hav ethe ability to NAT to multiple ranges
anymore.

−−random
If option −−random is used then port mapping will be randomized (kernel >= 2.6.22).

−−persistent
Gives a client the same source-/destination-address for each connection. This supersedes the
SAME target. Support for persistent mappings is available from 2.6.29-rc2.

DSCP
This target allows to alter the value of the DSCP bits within the TOS header of the IPv4 packet. Asthis
manipulates a packet, it can only be used in the mangle table.

−−set−dscpvalue
Set the DSCP field to a numerical value (can be decimal or hex)

−−set−dscp−classclass
Set the DSCP field to a DiffServ class.

ECN
This target allows to selectively work around known ECN blackholes.It can only be used in the mangle ta-
ble.

−−ecn−tcp−remove
Remove all ECN bits from the TCP header. Of course, it can only be used in conjunction with−p
tcp.

IDLETIMER
This target can be used to identify when interfaces have been idle for a certain period of time.Timers are
identified by labels and are created when a rule is set with a new label. Therules also take a timeout value
(in seconds) as an option. If more than one rule uses the same timer label, the timer will be restarted when-
ev er any of the rules get a hit.One entry for each timer is created in sysfs. This attribute contains the timer
remaining for the timer to expire. Theattributes are located under the xt_idletimer class:

iptables 1.4.10 24

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

/sys/class/xt_idletimer/timers/<label>

When the timer expires, the target module sends a sysfs notification to the userspace, which can then decide
what to do (eg. disconnect to save power).

−−timeout amount
This is the time in seconds that will trigger the notification.

−−label string
This is a unique identifier for the timer. The maximum length for the label string is 27 characters.

LOG
Turn on kernel logging of matching packets. Whenthis option is set for a rule, the Linux kernel will print
some information on all matching packets (like most IP header fields) via the kernel log (where it can be
read withdmesgor syslogd(8)). Thisis a "non-terminating target", i.e. rule traversal continues at the next
rule. Soif you want to LOG the packets you refuse, use two separate rules with the same matching criteria,
first using target LOG then DROP (or REJECT).

−−log−level level
Level of logging (numeric or seesyslog.conf(5)).

−−log−prefix prefix
Prefix log messages with the specified prefix; up to 29 letters long, and useful for distinguishing
messages in the logs.

−−log−tcp−sequence
Log TCP sequence numbers. This is a security risk if the log is readable by users.

−−log−tcp−options
Log options from the TCP packet header.

−−log−ip−options
Log options from the IP packet header.

−−log−uid
Log the userid of the process which generated the packet.

MARK
This target is used to set the Netfilter mark value associated with the packet. It can, for example, be used in
conjunction with routing based on fwmark (needs iproute2). If you plan on doing so, note that the mark
needs to be set in the PREROUTING chain of the mangle table to affect routing. The mark field is 32 bits
wide.

−−set−xmark value[/mask]
Zeroes out the bits given by maskand XORsvalue into the packet mark ("nfmark"). Ifmaskis
omitted, 0xFFFFFFFF is assumed.

−−set−mark value[/mask]
Zeroes out the bits given by maskand ORsvalue into the packet mark. Ifmask is omitted,
0xFFFFFFFF is assumed.

The following mnemonics are available:

−−and−mark bits
Binary AND the nfmark withbits. (Mnemonic for−−set−xmark 0/invbits, where invbits is the
binary negation of bits.)

−−or−mark bits
Binary OR the nfmark withbits. (Mnemonic for−−set−xmark bits/bits.)

−−xor−mark bits
Binary XOR the nfmark withbits. (Mnemonic for−−set−xmark bits/0.)

iptables 1.4.10 25

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

MASQUERADE
This target is only valid in thenat table, in thePOSTROUTING chain. It should only be used with
dynamically assigned IP (dialup) connections: if you have a static IP address, you should use the SNAT tar-
get. Masqueradingis equivalent to specifying a mapping to the IP address of the interface the packet is
going out, but also has the effect that connections areforgottenwhen the interface goes down. Thisis the
correct behavior when the next dialup is unlikely to have the same interface address (and hence any estab-
lished connections are lost anyway). It takes one option:

−−to−ports port[−port]
This specifies a range of source ports to use, overriding the default SNAT source port-selection
heuristics (see above). Thisis only valid if the rule also specifies−p tcp or −p udp.

−−random
Randomize source port mapping If option−−random is used then port mapping will be random-
ized (kernel >= 2.6.21).

MIRROR
This is an experimental demonstration target which inverts the source and destination fields in the IP header
and retransmits the packet. It is only valid in theINPUT , FORWARD andPREROUTING chains, and
user-defined chains which are only called from those chains. Note that the outgoing packets areNOT seen
by any packet filtering chains, connection tracking or NAT , to avoid loops and other problems.

NETMAP
This target allows you to statically map a whole network of addresses onto another network of addresses.It
can only be used from rules in thenat table.

−−to address[/mask]
Network address to map to. The resulting address will be constructed in the following way: All
’one’ bits in the mask are filled in from the new ‘address’. Allbits that are zero in the mask are
filled in from the original address.

NFLOG
This target provides logging of matching packets. When this target is set for a rule, the Linux kernel will
pass the packet to the loaded logging backend to log the packet. This is usually used in combination with
nfnetlink_log as logging backend, which will multicast the packet through anetlinksocket to the specified
multicast group. One or more userspace processes may subscribe to the group to receive the packets. Like
LOG, this is a non-terminating target, i.e. rule traversal continues at the next rule.

−−nflog−group nlgroup
The netlink group (1 − 2ˆ32−1) to which packets are (only applicable for nfnetlink_log). The
default value is 0.

−−nflog−prefix prefix
A prefix string to include in the log message, up to 64 characters long, useful for distinguishing
messages in the logs.

−−nflog−rangesize
The number of bytes to be copied to userspace (only applicable for nfnetlink_log). nfnetlink_log
instances may specify their own range, this option overrides it.

−−nflog−thresholdsize
Number of packets to queue inside the kernel before sending them to userspace (only applicable
for nfnetlink_log). Higher values result in less overhead per packet, but increase delay until the
packets reach userspace. The default value is 1.

NFQUEUE
This target is an extension of the QUEUE target. As opposed to QUEUE, it allows you to put a packet into
any specific queue, identified by its 16-bit queue number. It can only be used with Kernel versions 2.6.14
or later, since it requires thenfnetlink_queue kernel support. Thequeue-balanceoption was added in
Linux 2.6.31.

iptables 1.4.10 26

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−queue−numvalue
This specifies the QUEUE number to use. Valid queue numbers are 0 to 65535. The default value
is 0.

−−queue−balancevalue:value
This specifies a range of queues to use. Packets are then balanced across the given queues. Thisis
useful for multicore systems: start multiple instances of the userspace program on queues x, x+1, ..
x+n and use "−−queue−balancex:x+n". Packets belonging to the same connection are put into the
same nfqueue.

NOTRACK
This target disables connection tracking for all packets matching that rule.

It can only be used in theraw table.

RATEEST
The RATEEST target collects statistics, performs rate estimation calculation and saves the results for later
evaluation using therateestmatch.

−−rateest−namename
Count matched packets into the pool referred to byname, which is freely choosable.

−−rateest−interval amount{ s|ms|us}
Rate measurement interval, in seconds, milliseconds or microseconds.

−−rateest−ewmalogvalue
Rate measurement averaging time constant.

REDIRECT
This target is only valid in thenat table, in thePREROUTING andOUTPUT chains, and user-defined
chains which are only called from those chains. It redirects the packet to the machine itself by changing the
destination IP to the primary address of the incoming interface (locally-generated packets are mapped to the
127.0.0.1 address).

−−to−ports port[−port]
This specifies a destination port or range of ports to use: without this, the destination port is never
altered. Thisis only valid if the rule also specifies−p tcp or −p udp.

−−random
If option −−random is used then port mapping will be randomized (kernel >= 2.6.22).

REJECT
This is used to send back an error packet in response to the matched packet: otherwise it is equivalent to
DROP so it is a terminating TARGET, ending rule traversal. Thistarget is only valid in theINPUT , FOR-
WARD andOUTPUT chains, and user-defined chains which are only called from those chains. The fol-
lowing option controls the nature of the error packet returned:

−−reject−with type
The type given can beicmp−net−unreachable, icmp−host−unreachable, icmp−port−unreach-
able, icmp−proto−unreachable, icmp−net−prohibited, icmp−host−prohibited or
icmp−admin−prohibited (*) which return the appropriate ICMP error message (port−unreach-
able is the default). Theoption tcp−resetcan be used on rules which only match the TCP proto-
col: this causes a TCP RST packet to be sent back. This is mainly useful for blockingident
(113/tcp) probes which frequently occur when sending mail to broken mail hosts (which won’t
accept your mail otherwise).

(*) Using icmp−admin−prohibited with kernels that do not support it will result in a plain DROP instead of
REJECT

SAME
Similar to SNAT/DNAT depending on chain: it takes a range of addresses (‘−−to 1.2.3.4−1.2.3.7’) and
gives a client the same source-/destination-address for each connection.

iptables 1.4.10 27

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

N.B.: The DNAT target’s−−persistentoption replaced the SAME target.

−−to ipaddr[−ipaddr]
Addresses to map source to. May be specified more than once for multiple ranges.

−−nodst
Don’t use the destination-ip in the calculations when selecting the new source-ip

−−random
Port mapping will be forcibly randomized to avoid attacks based on port prediction (kernel >=
2.6.21).

SECMARK
This is used to set the security mark value associated with the packet for use by security subsystems such as
SELinux. It is only valid in themangletable. The mark is 32 bits wide.

−−selctxsecurity_context

SET
This modules adds and/or deletes entries from IP sets which can be defined by ipset(8).

−−add−setsetname flag[,flag...]
add the address(es)/port(s) of the packet to the sets

−−del−setsetname flag[,flag...]
delete the address(es)/port(s) of the packet from the sets

where flags aresrc and/ordst specifications and there can be no more than six of them.

Use of -j SET requires that ipset kernel support is provided. As standard kernels do not ship this currently,
the ipset or Xtables-addons package needs to be installed.

SNAT
This target is only valid in thenat table, in thePOSTROUTING chain. Itspecifies that the source address
of the packet should be modified (and all future packets in this connection will also be mangled), and rules
should cease being examined. Ittakes one type of option:

−−to−sourceipaddr[−ipaddr][:port[−port]]
which can specify a single new source IP address, an inclusive range of IP addresses, and option-
ally, a port range (which is only valid if the rule also specifies−p tcp or −p udp). If no port range
is specified, then source ports below 512 will be mapped to other ports below 512: those between
512 and 1023 inclusive will be mapped to ports below 1024, and other ports will be mapped to
1024 or above. Where possible, no port alteration will

In Kernels up to 2.6.10, you can add several −−to−source options. For those kernels, if you specify
more than one source address, either via an address range or multiple −−to−source options, a sim-
ple round-robin (one after another in cycle) takes place between these addresses.Later Kernels
(>= 2.6.11-rc1) don’t hav ethe ability to NAT to multiple ranges anymore.

−−random
If option −−random is used then port mapping will be randomized (kernel >= 2.6.21).

−−persistent
Gives a client the same source-/destination-address for each connection. This supersedes the
SAME target. Support for persistent mappings is available from 2.6.29-rc2.

TCPMSS
This target allows to alter the MSS value of TCP SYN packets, to control the maximum size for that con-
nection (usually limiting it to your outgoing interface’s MTU minus 40 for IPv4 or 60 for IPv6, respec-
tively). Of course, it can only be used in conjunction with−p tcp.

This target is used to overcome criminally braindead ISPs or servers which block "ICMP Fragmentation
Needed" or "ICMPv6 Packet Too Big" packets. Thesymptoms of this problem are that everything works
fine from your Linux firewall/router, but machines behind it can never exchange large packets:

iptables 1.4.10 28

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

1) Web browsers connect, then hang with no data received.
2) Small mail works fine, but large emails hang.
3) ssh works fine, but scp hangs after initial handshaking.

Workaround: activate this option and add a rule to your firewall configuration like:

iptables −t mangle −A FORWARD −p tcp −−tcp−flags SYN,RST SYN
−j TCPMSS −−clamp−mss−to−pmtu

−−set−mssvalue
Explicitly sets MSS option to specified value. If the MSS of the packet is already lower thanvalue,
it will not be increased (from Linux 2.6.25 onwards) to avoid more problems with hosts relying on
a proper MSS.

−−clamp−mss−to−pmtu
Automatically clamp MSS value to (path_MTU − 40 for IPv4; −60 for IPv6).This may not func-
tion as desired where asymmetric routes with differing path MTU exist — the kernel uses the path
MTU which it would use to send packets from itself to the source and destination IP addresses.
Prior to Linux 2.6.25, only the path MTU to the destination IP address was considered by this
option; subsequent kernels also consider the path MTU to the source IP address.

These options are mutually exclusive.

TCPOPTSTRIP
This target will strip TCP options off a TCP packet. (It will actually replace them by NO-OPs.) As such,
you will need to add the−p tcp parameters.

−−strip−options option[,option...]
Strip the given option(s). The options may be specified by TCP option number or by symbolic
name. The list of recognized options can be obtained by calling iptables with−j TCPOPTSTRIP
−h.

TEE
The TEE target will clone a packet and redirect this clone to another machine on thelocal network seg-
ment. In other words, the nexthop must be the target, or you will have to configure the nexthop to forward it
further if so desired.

−−gatewayipaddr
Send the cloned packet to the host reachable at the given IP address. Useof 0.0.0.0 (for IPv4
packets) or :: (IPv6) is invalid.

To forward all incoming traffic on eth0 to an Network Layer logging box:

−t mangle −A PREROUTING −i eth0 −j TEE −−gateway 2001:db8::1

TOS
This module sets the Type of Service field in the IPv4 header (including the "precedence" bits) or the Prior-
ity field in the IPv6 header. Note that TOS shares the same bits as DSCP and ECN. The TOS target is only
valid in themangletable.

−−set−tosvalue[/mask]
Zeroes out the bits given by maskand XORsvalueinto the TOS/Priority field. Ifmaskis omitted,
0xFF is assumed.

−−set−tossymbol
You can specify a symbolic name when using the TOS target for IPv4. It implies a mask of 0xFF.
The list of recognized TOS names can be obtained by calling iptables with−j TOS −h.

The following mnemonics are available:

−−and−tosbits
Binary AND the TOS value withbits. (Mnemonic for−−set−tos 0/invbits, where invbits is the
binary negation of bits.)

iptables 1.4.10 29

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−or−tos bits
Binary OR the TOS value withbits. (Mnemonic for−−set−tosbits/bits.)

−−xor−tos bits
Binary XOR the TOS value withbits. (Mnemonic for−−set−tosbits/0.)

TPROXY
This target is only valid in themangle table, in thePREROUTING chain and user-defined chains which
are only called from this chain. It redirects the packet to a local socket without changing the packet header
in any way. It can also change the mark value which can then be used in advanced routing rules. It takes
three options:

−−on−port port
This specifies a destination port to use. It is a required option, 0 means the new destination port is
the same as the original. This is only valid if the rule also specifies−p tcp or −p udp.

−−on−ip address
This specifies a destination address to use. By default the address is the IP address of the incoming
interface. This is only valid if the rule also specifies−p tcp or −p udp.

−−tproxy−mark value[/mask]
Marks packets with the given value/mask. The fwmark value set here can be used by advanced
routing. (Required for transparent proxying to work: otherwise these packets will get forwarded,
which is probably not what you want.)

TRACE
This target marks packes so that the kernel will log every rule which match the packets as those traverse the
tables, chains, rules. (The ipt_LOG or ip6t_LOG module is required for the logging.) The packets are
logged with the string prefix: "TRACE: tablename:chainname:type:rulenum " where type can be "rule" for
plain rule, "return" for implicit rule at the end of a user defined chain and "policy" for the policy of the built
in chains.
It can only be used in theraw table.

TTL
This is used to modify the IPv4 TTL header field. The TTL field determines how many hops (routers) a
packet can traverse until it’s time to live is exceeded.

Setting or incrementing the TTL field can potentially be very dangerous, so it should be avoided at any
cost.

Don’t ever set or increment the value on packets that leave your local network! mangle table.

−−ttl−set value
Set the TTL value to ‘value’.

−−ttl−dec value
Decrement the TTL value ‘value’ times.

−−ttl−inc value
Increment the TTL value ‘value’ times.

ULOG
This target provides userspace logging of matching packets. Whenthis target is set for a rule, the Linux
kernel will multicast this packet through anetlink socket. One or more userspace processes may then sub-
scribe to various multicast groups and receive the packets. Like LOG, this is a "non-terminating target", i.e.
rule traversal continues at the next rule.

−−ulog−nlgroup nlgroup
This specifies the netlink group (1-32) to which the packet is sent. Default value is 1.

−−ulog−prefix prefix
Prefix log messages with the specified prefix; up to 32 characters long, and useful for distinguish-
ing messages in the logs.

iptables 1.4.10 30

IPTABLES(8) iptables 1.4.10 IPTABLES(8)

−−ulog−cprangesize
Number of bytes to be copied to userspace.A value of 0 always copies the entire packet, regard-
less of its size. Default is 0.

−−ulog−qthresholdsize
Number of packet to queue inside kernel. Settingthis value to, e.g. 10 accumulates ten packets
inside the kernel and transmits them as one netlink multipart message to userspace.Default is 1
(for backwards compatibility).

DIAGNOSTICS
Various error messages are printed to standard error. The exit code is 0 for correct functioning.Errors
which appear to be caused by invalid or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.

BUGS
Bugs? What’s this? ;-) Well, you might want to have a look at http://bugzilla.netfilter.org/

COMPATIBILITY WITH IPCHAINS
This iptables is very similar to ipchains by Rusty Russell. The main difference is that the chainsINPUT
andOUTPUT are only traversed for packets coming into the local host and originating from the local host
respectively. Hence every packet only passes through one of the three chains (except loopback traffic,
which involves both INPUT and OUTPUT chains); previously a forwarded packet would pass through all
three.

The other main difference is that−i refers to the input interface;−o refers to the output interface, and both
are available for packets entering theFORWARD chain.

The various forms of NAT hav ebeen separated out;iptables is a pure packet filter when using the default
‘filter’ table, with optional extension modules. This should simplify much of the previous confusion over
the combination of IP masquerading and packet filtering seen previously. So the following options are han-
dled differently:
−j MASQ
−M −S
−M −L
There are several other changes in iptables.

SEE ALSO
iptables−save(8), iptables−restore(8), ip6tables(8), ip6tables−save(8), ip6tables−restore(8), libipq (3).

The packet-filtering-HOWTO details iptables usage for packet filtering, the NAT -HOWTO details NAT , the
netfilter-extensions-HOWTO details the extensions that are not in the standard distribution, and the net-
filter-hacking-HOWTO details the netfilter internals.
Seehttp://www.netfilter.org/ .

AUTHORS
Rusty Russell originally wrote iptables, in early consultation with Michael Neuling.

Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic packet selection framework in ipta-
bles, then wrote the mangle table, the owner match, the mark stuff, and ran around doing cool stuff every-
where.

James Morris wrote the TOS target, and tos match.

Jozsef Kadlecsik wrote the REJECT target.

Harald Welte wrote the ULOG and NFQUEUE target, the new libiptc, as well as the TTL, DSCP, ECN
matches and targets.

The Netfilter Core Team is: Marc Boucher, Martin Josefsson, Yasuyuki Kozakai, Jozsef Kadlecsik, Patrick
McHardy, James Morris, Pablo Neira Ayuso, Harald Welte and Rusty Russell.

Man page originally written by Herve Eychenne <rv@wallfire.org>.

iptables 1.4.10 31

IPTABLES-SAVE(8) IPTABLES-SAVE(8)

NAME
iptables-save — dump iptables rules to stdout

SYNOPSIS
iptables−save [−M modprobe] [−c] [−t table]

DESCRIPTION
iptables-save is used to dump the contents of an IP Table in easily parseable format to STDOUT. Use I/O-
redirection provided by your shell to write to a file.

−M modprobe_program
Specify the path to the modprobe program. By default, iptables-save will inspect /proc/sys/ker-
nel/modprobe to determine the executable’s path.

−c, −−counters
include the current values of all packet and byte counters in the output

−t, −−table tablename
restrict output to only one table. If not specified, output includes all available tables.

BUGS
None known as of iptables-1.2.1 release

AUTHOR
Harald Welte <laforge@gnumonks.org>

SEE ALSO
iptables−restore(8), iptables(8)

The iptables-HOWTO, which details more iptables usage, the NAT -HOWTO, which details NAT , and the
netfilter-hacking-HOWTO which details the internals.

Jan 04, 2001 1

IPTABLES-RESTORE(8) IPTABLES-RESTORE(8)

NAME
iptables-restore — Restore IP Tables

SYNOPSIS
iptables−restore[−c] [−n]

DESCRIPTION
iptables-restore is used to restore IP Tables from data specified on STDIN. Use I/O redirection provided
by your shell to read from a file

−c, −−counters
restore the values of all packet and byte counters

−n, −−noflush
don’t flush the previous contents of the table. If not specified,iptables-restoreflushes (deletes) all
previous contents of the respective IP Table.

BUGS
None known as of iptables-1.2.1 release

AUTHOR
Harald Welte <laforge@gnumonks.org>

SEE ALSO
iptables−save(8), iptables(8)

The iptables-HOWTO, which details more iptables usage, the NAT -HOWTO, which details NAT , and the
netfilter-hacking-HOWTO which details the internals.

Jan 04, 2001 1

	What is IPTables
	Fundamental Concepts
	Chains
	Tables
	NAT
	Filtering
	Mangling

	Packet Flow
	Rules
	Matches
	Targets

	Configuring and Managing iptables
	Starting and Stopping
	IPTables List Command
	IP Tables Flush Command
	IP Tables Policy Command
	Writing Rules
	Leveraging the connection state
	Blocking packets from specific sources
	Accepting packets of desired type
	Saving/Restoring Rules to/from files
	Custom (User-defined) Chains
	Logging
	IPTables matches
	Implicit matches
	Explicit matches

	Some recommended Best Practices for iptables

	Applications
	Some specific techniques and their configuration
	Port Knocking
	Implementation using custom-chains
	Using the Portknock0 project iptables module

	Rate Limiting
	Protecting against ping flood attacks

	Connection Limiting
	Limiting the number of SSH connections from a host (in parallel)
	Bruteforce attack protection

	iptables at IIIT-H
	Suggestions for Optimization and Improvement
	Optimizing iptables by creating user-defined chains
	Reordering rules based on counters
	Logging and Dropping/Accepting with a single rule

	Man Pages

