IPTABLES

Project Report

Spring 2011
IIIT, Hyderabad

SANKALP KHARE (200702039)

Project Overview

This project documents the configuration and capabilities of the iptables firewall for Linux systems.
It also discusses some of the advanced features of iptables, and gives sufficient documentation on
how to implement these.

We also describe the firewall config of various servers at IIIT, Hyderabad with suggestions for
optimization and overall improvement.

Contents
1 What is IPTables

2 Fundamental Concepts

n

4 Applications

5 Some specific techniques and their configuration

2.1 Chains oo e
2.2 Tables e
221 NAT . . e
2.2.2 Filtering L e
2.2.3 Mangling
2.3 Packet Flow
2.4 Rules. e
2.5 Matches o e
2.6 Targets L
3 Configuring and Managing iptables
3.1 Starting and Stopping
3.2 TIPTables List Command
3.3 IP Tables Flush Command
3.4 IP Tables Policy Command
3.5 Writing Rules
3.5.1 Leveraging the connection state,
3.5.2 Blocking packets from specific sources L.
3.5.3 Accepting packets of desired typeo
3.5.4 Saving/Restoring Rules to/from files
3.5.5 Custom (User-defined) Chains
3.5.6 Logging e
3.5.7 IPTablesmatches.
3.5.8 Implicit matches
3.5.9 Explicit matches
3.6 Some recommended Best Practices for iptables o0 0oL

5.1 Port Knocking
5.1.1 Implementation using custom-chains
5.1.2 Using the Portknock(project iptables module

5.2 Rate Limiting
5.2.1 Protecting against ping flood attacks oL,

5.3 Connection Limiting L
5.3.1 Limiting the number of SSH connections from a host (in parallel)
5.3.2 Bruteforce attack protection L.,

6 iptables at ITIT-H

6.1 Suggestions for Optimization and Improvement
6.1.1 Optimizing iptables by creating user-defined chains
6.1.2 Reordering rules based on counters

6.1.3 Logging and Dropping/Accepting with a single rule

7 Man Pages

OO UL UL W W WwWwNN

23

24
24
24
25
25
26
26
26
26

26
27
27
27
28

29

1 What is IPTables

iptables, in the most basic sense, is a firewall program. However, it is one of the most popularly
used firewall applications worldwide, and ships with most distributions of Linux. The Linux
kernel’s network packet processing subsystem is called Netfilter, and iptables is the command
used to configure it.

The iptables architecture groups network packet processing rules into tables by function (packet
filtering, network address translation, and other packet mangling), each of which have chains
(sequences) of processing rules. Rules consist of matches, which are criterions used to determine
which packets the rule will apply to, and targets (that determine what will be done with the
matching packets). iptables operates at OSI Layer 3 (Network). For OSI Layer 2 (Link), there
are other technologies such as ebtables (Ethernet Bridge Tables).

2 Fundamental Concepts

iptables is a stateful firewall. It supports dynamically loadable modules which supplement its
workings and provide for a host of extra features. Most of the processing of packets in iptables
happens based on chains and tables. The choice of where (table, chain) to put rules is made based
on where in the packet’s journey we wish to apply those rules, as will become clear in the rest of
this section.

2.1 Chains

iptables defines five “hook points” in the kernel’s packet processing pathways:

1. PREROUTING 4. POSTROUTING
2. INPUT 5. OUTPUT
3. FORWARD

Built-in chains are attached to these hook points; we can add a sequence of rules for each hook
point. Each rule represents an opportunity to affect or monitor packet flow. Saying “INPUT
chain” means we are referring to the chain attached to the INPUT hook point.

Each of the “hook points”/chains allows us to manipulate packets at a certain point in their journey
through the system :

PREROUTING
Allows us to act on packets just after they arrive, but before any routing decision for them
is made.

INPUT
Allows us to process packets just before they are delivered to a local process.

FORWARD
Allows us to process packets that flow through our machine treating it as a gateway, i.e.
coming in via one interface and straightaway leaving through another.

POSTROUTING
Allows us to act on packets just before they leave the machine through a network interface.

ouTPUT
Allows us to process packets just after they are generated (by a local process).

In addition, we can create our own custom chains, for better organization of rules.

A chain’s policy determines the fate of packets that reach the end of the chain without otherwise
being sent to a specific target. Only the built-in targets ACCEPT and DROP can be used as the
policy for a built-in chain, and the default is ACCEPT. All user-defined chains have an implicit
policy of RETURN that cannot be changed.

It is for this reason that if we want a more complicated policy for a built-in chain or a policy other
than RETURN for a user-defined chain, we add a rule to the end of the chain that matches all
packets, with a target of our liking.

2.2 Tables

iptables comes with three built-in tables: filter, mangle, and nat. Each is preconfigured with
chains corresponding to one or more of the hook points described earlier.

Just as chains represent the hook-points in the iptables workflow, tables represent the type of
processing (conceptually) that can occur. The following are the possible legal combinations, and
the corresponding tables.

2.2.1 NAT

NAT-ing is the process of modifying the IP Headers, in particular the to/from addresses, of a
packet in transit through the machine. A machine performing NAT acts like a routing device.

The NAT Table is used with connection tracking to redirect connections for network address
translation; typically based on source or destination addresses.

...................

N ‘
’ . M

 Network i Local
: interface : > ’g process
: Network i Local
 interface a < < } process

...................

Figure 1: NAT: packet flow and hook points

Figure 1 shows how packets go through the system for Network Address Translation (NAT). It
becomes clear that the NAT Table should contain 3 chains — PREROUTING, POSTROUTING
and OUTPUT.

2.2.2 Filtering

Filtering is the most widely used feature of iptables. It is used to set policies for the type of traffic
allowed into, through, and out of the computer. Unless we refer to a different table explicitly,
iptables operates on chains within this table by default. Its built-in chains are: FORWARD,
INPUT, and OUTPUT.

A m e ——

© Network : : Lol i
L interface ! | process

..........

..........

..........

FORWARD
i Network : <

i interface : <

'
g

. A .. ’

........... ‘ “rmmmmmaa==’

Local
process

Figure 2: Filtering: packet flow and hook points

Figure 2 shows the (conceptual) flow of packets when they are filtered by the machine. The chains
(in the grey boxes) are the chains that become part of the filter table.

2.2.3 Mangling

+

' Network ' Local

! interface i PREROUTING m_> process |
FORWARD

' Network Local

: interface i POSTROUTING <_m < } process

.....................

Figure 3: Mangling: packet flow and hook points

Mangling is used in specialized packet alteration, such as stripping off IP options (as with the
IPV4OPTSSTRIP target extension). Its built-in chains are: FORWARD, INPUT, OUTPUT,
POSTROUTING, and PREROUTING.

Figure 3 shows the corresponding flow for packet mangling. We will not discuss much of mangling
in this document.

Thus, if all the above were to be put into one grand schematic, it would resemble figure 4

NETWORK

raw
PREROUTING
mangle
PREROUTING
nat
PREROUTING
Routing
Decision

Local
Process
Routing
Decision

mangle
FORWARD

filter
FORWARD

Routing
Decision
mangle
POSTROUTING
nat
POSTROUTING

NETWORK

mangle
OUTPUT

Figure 4: IPTables: The grand scheme of things

2.3 Packet Flow

Packets traverse chains, and are presented to their rules one at a time in order. If a packet does
not match the rule’s criteria, the packet moves to the next rule in the chain. If a packet reaches
the last rule in the chain and still does not match, the chain’s policy (which can also be viewed
as the chain’s default target) is applied to it.

2.4 Rules

An iptables rule consists of one or more match criteria that determine which network packets it
affects (all match options must be satisfied for the rule to match a packet) and a target specification
that determines how the network packets will be affected. The system maintains packet and byte
counters for every rule. Every time a packet reaches a rule and matches the rule’s criteria, the
packet counter is incremented, and the byte counter is increased by the size of the matching packet.

Both the match and the target portion of the rule are optional. If there are no match criteria, all
packets are considered to match. If there is no target specification, nothing is done to the packets
(processing proceeds as if the rule did not exist—except that the packet and byte counters are
updated).

2.5 Matches

There are a variety of matches available for use with iptables, although some are available only for
kernels with certain features enabled (usually later versions of kernels). Generic Internet Protocol
(IP) matches (such as protocol, source, or destination address) are applicable to any IP packet.
In addition to the generic matches, iptables includes many specialized matches available through
dynamically loaded extensions (we use the iptables -m or --match option to inform iptables that we
want to use one of these extensions). There is one match extension for dealing with a networking
layer below the IP layer. The mac match extension matches based on Ethernet media access
controller (MAC) addresses.

2.6 Targets

Targets are used to specify the action to take when a rule matches a packet and also to specify
chain policies. Four targets are built into iptables, and extension modules can provide more.

The built in targets are :

ACCEPT
Let the packet through to the next stage of processing. Stop traversing the current chain,
and start at the next stage in the packet flow.

DROP
Discontinue processing the packet completely. Do not check it against any other rules,
chains, or tables. In case we want to provide some feedback to the sender, we must use the
REJECT target instead.

QUEUE
Send the packet to userspace (i.e. code not in the kernel). The libipq manpage offers more
information.

RETURN
From a rule in a user-defined chain, discontinue processing this chain, and resume traversing
the calling chain at the rule following the one that had this chain as its target. From a rule
in a built-in chain, discontinue processing the packet and apply the chain’s policy to it.

3 Configuring and Managing iptables

3.1 Starting and Stopping

iptables can be started/stopped using the service command.

Listing 1: Starting and Stopping iptables

[root@someserver ~]$ service iptables start
[root@someserver ~]$ service iptables stop

Whether or not to invoke it on startup can be set using the chkconfig command.

When iptables is started, the default rule-set is loaded from the contents of the file
/etc/sysconfig/iptables. This file should contain a list of iptables rules that we want to

s w N

o

10
11
12
13

R T RS C R

®

s w N e

o

add, in the same order. The only difference is that while writing them in this file, we can omit
the iptables prefix.

Listing 2: Sample /etc/sysconfig/iptables file

Firewall configuration written by system-config-firewall
Manual customization of this file is not recommended.
xfilter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

—A INPUT -m state —--state ESTABLISHED,RELATED -3j ACCEPT

-A INPUT -p icmp -j ACCEPT

—-A INPUT -i lo -3j ACCEPT

—A INPUT -m state —--state NEW -m tcp -p tcp —--dport 22 -j ACCEPT
—A INPUT -j REJECT --reject-with icmp-host-prohibited

—A FORWARD -7j REJECT --reject-with icmp-host-prohibited
COMMIT

In listing 2,
e line 3 means that the subsequent rules are part of the FILTER table.

e lines 4, 5 and 6 set the default policy of the INPUT, FORWARD and OUTPUT chains to
ACCEPT, and the counters to zero.

e lines 7-12 (inclusive) are the desired rules to be loaded on startup.
e line 13 enforces the above configuration.

note: now onwards, we may describe rules without explicitly prefizing them with the iptables
command.

3.2 IPTables List Command

The iptables list command displays all the chains, with their rules, that are currently in place.

Listing 3: Listing config: Empty configuration

[root@someserver ~]$ iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

The above output indicates that there are 3 chains, but all of them are empty. This is also the
output shown when iptables has been switched off.

A simple configuration may be like the following:

Listing 4: Listing config: Basic configuration

[root@someserver ~]$ iptables -L
Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere state RELATED, ESTABLISHED

ACCEPT icmp -- anywhere anywhere

ACCEPT all -- anywhere anywhere

ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh

REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

10
11
12
13
14

15

IS

© ® a9 o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Chain FORWARD (policy ACCEPT)
target prot opt source destination
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Each IP Tables command has two versions a shorthand version and a verbose version. Following
the general style used by most linux command line utilities, the verbose versions all use a double
dash and the shorthand versions use a single dash.

Listing 5: Listing config: Some other invocations

[root@someserver ~]$ iptables --list # verbose version
[root@someserver ~]$ iptables -L —--line-numbers # listing with line numbers
[root@someserver ~]$ iptables -L -n # list ports and IP addresses

numerically, rather than by name

Listing ports and IP addresses numerically (as shown in the last example of listing 5) is highly
advisable for quick outputs when the ruleset is large. The reason is that when doing a normal
listing, iptables performs DNS lookups for the addresses in each rule, which may cause a
considerable delay in printing the output.

Listing 6: Difference in output of normal and numeric listing

[root@someserver ~]$ iptables -L # normal

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere state RELATED, ESTABLISHED

ACCEPT icmp -- anywhere anywhere

ACCEPT all -- anywhere anywhere

ACCEPT tcp -- anywhere anywhere state NEW tcp dpt:ssh

REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)
target prot opt source destination
REJECT all -- anywhere anywhere reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

[root@someserver ~]$ iptables -L -n # numeric

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED, ESTABLISHED

ACCEPT icmp —— 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT tcp -— 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22

REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)
target prot opt source destination
REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Notice how, in the numeric version, keywords get replaced with their numeric meanings.

3.3 IP Tables Flush Command

If there are any rules listed we first need to clear them. To do that we use the flush command:

Listing 7: Flush command

[root@someserver ~]$ iptables —--flush
[root@someserver ~]$ iptables -F # shorthand version

Usually, while applying any fresh configuration, the first step is to purge the existing one using
the flush command.

3.4 IP Tables Policy Command

Using this command, we can set the default policy for each of the chains. As mentioned earlier,
the policy is the action to be performed on a packet which passes through the chain without being
matched by any rule.

Listing 8: Setting DROP as the policy for all 3 built-in chains

[root@someserver ~]$ iptables --policy INPUT DROP # policy for chain INPUT set to
DROP

[root@someserver ~]$ iptables --policy FORWARD DROP # likewise for chain FORWARD

[root@someserver ~]$ iptables --policy OUTPUT DROP # and for chain OUTPUT

This sets our overall policy to drop every packet that we don’t explicitly allow.

The shorthand version of the policy command is:

Listing 9: Short version

[root@someserver ~]$ iptables -P INPUT DROP # set the policy for chain INPUT as DROP

3.5 Writing Rules

The basic format of an iptables rule is as decribed in listing 10.

Listing 10: iptables rule format

iptables [-t table] command [match] [target/jump]

There is nothing that says that the target instruction has to be the last function in the line.
However, we generally adhere to this syntax to get the best readability. Most people write their
rules in this way. Hence, if we read someone else’s script, it becomes easier to recognize the syntax
and easily understand the rule.

If we want to use a table other than the standard table, we insert the table specification at the
point at which [table] is specified. However, it is not necessary to state explicitly what table to
use, since by default iptables uses the filter table on which to implement all commands. Neither
do we have to specify the table at just this point in the rule. It could be set pretty much anywhere
along the line. However, it is more or less standard to put the table specification at the beginning.

The command always comes first, unless a table is explicitly specified, in which case the table
declaration comes first, followed by the command. We use ’command’ to tell the program what
to do, for example to insert a rule (-I) or to add a rule to the end of the chain (-2), or to delete
a rule (-D).

The match is the part of the rule that iptables sends to the kernel that details the specific character
of the packet, what makes it different from all other packets. Here we could specify what IP address
the packet comes from, from which network interface, the intended IP address, port, protocol or
whatever. There is a lot of different matches that we can use.

4 o o e w N e

Finally we have the target of the packet. If all the matches are met for a packet, we tell iptables
what to do with it. We could, for example, tell it to send the packet to another chain that we’ve
created ourselves, and which is part of this particular table. We could instruct iptables to drop
the packet and do no further processing, or we could make it send a specified reply to the sender.

Lets take a sample iptables rule and find out what each part means.

Listing 11: Sample iptables rule

iptables \\

—-A INPUT \\

-5 192.168.1.10 \\
-d 10.1.15.1 \\

-p tcp \\

——dport 22 \\

—3 ACCEPT \\

command

append this rule to chain INPUT

packet source 192.168.1.10

packet destination 10.1.15.1

protocol TCP

destination port 22 (SSH)

if everything matches, jump to ACCEPT (action)

P

A general iptables rule lists out a set of conditions and an action such that if a packet matches all
the given conditions, the said action should be performed on it.

3.5.1 Leveraging the connection state

iptables can determine the “state” of a TCP packet. This is a feature commonly used to identify
packets while writing rules. For example, there is the three-way handshake between two hosts
when transmitting data:

1. NEW => serverl connects to server2 issuing a SYN (Synchronize) packet.

2. RELATED => server2 receives the SYN packet, and then responds with a SYN-ACK (Syn-
chronize Acknowledgment) packet.

3. ESTABLISHED —> serverl receives the SYN-ACK packet and then responds with the final
ACK (Acknowledgment) packet.

The three rules in listing 12, together, allow this kind of TCP Communication.

Listing 12: iptables rules allowing for three-way TCP handshakes

-A INPUT \\ # append to chain INPUT

-m state \\ # load module "state"

—-state RELATED,ESTABLISHED \\ # packets with state RELATED or ESTABLISHED
-3 ACCEPT # jump to ACCEPT

-A FORWARD \\ # append to chain FORWARD

-i ethO0 \\ # packets being forwarded by interface ethO

-m state \\ # load module "state"

—--state RELATED,ESTABLISHED \\ # packets with state RELATED or ESTABLISHED
-3 ACCEPT # jump to ACCEPT

—A OUTPUT \\ # append to chain OUTPUT

-m state \\ # load module "state"

—-state NEW,RELATED,ESTABLISHED \\ # packets with state NEW, RELATED or ESTABLISHED
-j ACCEPT # jump to ACCEPT

The rules in listing 12 utilize the state module of iptables. Note that modules are loaded
dynamically, as per requirement, using the -m <modulename> switch.

note: the state module is now obsoleted by the conntrack module, which has enhanced func-
tionality.

3.5.2 Blocking packets from specific sources

The rule in listing 13 blocks all incoming traffic from the IP 10.1.34.246.

10

s w N e

o g e w N e

oo w N e

Listing 13: iptables rule restricting all incoming traffic from 10.1.34.246

iptables \\

-A INPUT \\ # append rule to chain INPUT
-s 10.1.34.246 \\ # packets from source 10.1.34.246
-j DROP # DROP (regardless of protocol/packet type)

The rule in listing 14 blocks all incoming traffic on port 25 (SMTP) from the host mail.spammer.org
(assuming it is a host which sends spam mail).

Listing 14: iptables rule preventing mail-spammming from a known spam source

iptables \\

—A INPUT \\ # add as the last rule of chain INPUT (append)
-s mail.spammer.org \\ # packet source mail.spammer.org

-p tcp \\ # protocol tcp

—-—dport 25 \\ # packet destination port 25

-j REJECT # Jump to action REJECT

Notice, as shown in listing 14, line 3, that iptables accepts domain names in source/destination
specifications.

3.5.3 Accepting packets of desired type

Knowing the port being used for an application allows us to leverage that fact to accept/reject
traffic pertaining to that application. The rules in listing 15 do exactly that.

Listing 15: iptables rules permitting traffic of certain types

iptables -A INPUT -p tcp —--dport 22 -j ACCEPT # ssh
iptables -A INPUT -p tcp —--dport 25 -j ACCEPT # sendmail/smtp
iptables -A INPUT -p tcp —--dport 20:21 -3j ACCEPT # ftp

iptables —-A INPUT -p tcp --dport 80 -j ACCEPT # http

iptables -A INPUT -p icmp -3j ACCEPT # icmp/ping packets

Notice how, in rule 3 of listing 15, we can specify a range of ports.

3.5.4 Saving/Restoring Rules to/from files

The iptables—-save and iptables—-restore commands allow us to save and restore rules
to/from files. Consult the man-pages attached, for reference.

note: using iptables-save to redirect output will overwrite /etc/sysconfig/iptables, so it
must be used with care. Any custom comments etc. present in the file will be lost.

3.5.5 Custom (User-defined) Chains

We can create our own chains, in iptables. This is very helpful in both organizing our firewall
config and streamlining it to make it more efficient.

Let us demonstrate the chain management commands by an example :

e Creating a chain

Listing 16: Chain creation

iptables —--new-chain OUTPUTDROP # create a chain by name OUTPUTDROP
1iptables -N OUTPUTDROP # abbreviated version

iptables --delete-chain OUTPUTDROP # oops! wrong name... DELETE!

1iptables —-X OUTPUTDROP # abbreviated version of delete
iptables -N OUTACCEPT # re-create with the intended name

[N

11

w N

[L R I SRR SR

11

Now we have a chain called OUTACCEPT, which is empty.

Adding rules to the chain
Next, we will add rules to the chain. Let us add the exact same rules which are present in
the output chain (the reason will become clear soon).

Listing 17: Adding Rules to the Chain

iptables —A OUTACCEPT \\ # append to chain OUTACCEPT

-0 lo \\ # packets going out through the loopback interface
—j ACCEPT # allow them to pass
iptables —-A OUTACCEPT \\
-0 eth0 \\ # packets exiting through interface ethO
-3 ACCEPT

Once these rules are added, a rule listing should show output as shown in listing 18

Listing 18: The result

[root@someserver ~]$ iptables -L -v --line-numbers

Chain OUTPUT (policy DROP 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination
1 34 2252 ACCEPT all -- any lo anywhere anywhere
2 1651 299K ACCEPT all -- any ethO anywhere anywhere

Chain OUTACCEPT (0 references)

num pkts bytes target prot opt in out source destination
1 0 0 ACCEPT all -- any lo anywhere anywhere
2 0 0 ACCEPT all -- any ethO anywhere anywhere

Notice that the chain OUTACCEPT has 0 references, which means there is no rule that points
to it, and thus the chain is currently unused.

Referencing the chain

Our chain now has the exact same rules as the chain OUTPUT. Let us now modify the
OUTPUT chain such that it only contains a single rule which points to chain OUTACCEPT.
The procedure is outlined in listing

Listing 19: Referencing our Chain

[root@someserver ~]$ iptables \\
-I OUTPUT 1 \\ # insert in chain OUTPUT at position 1
—j OUTACCEPT # jump to chain OUTACCEPT

[root@someserver ~]$ iptables -L -v --line-numbers OUTPUT

Chain OUTPUT (policy DROP 0 packets, 0 bytes)

num pkts bytes target prot opt in out source destination
421 71264 OUTACCEPT all -- any any anywhere anywhere
1651 299K ACCEPT all —-- any ethO anywhere anywhere

root@someserver ~]$ iptables -D OUTPUT 2 # delete rule 2 of chain OUTPUT

1

2 34 2252 ACCEPT all -- any 1lo anywhere anywhere

3

[

[root@someserver ~]$ iptables -D OUTPUT 2 # delete rule 2 of chain OUTPUT

Notice that in line 11 we again delete rule 2 of chain ouTPUT. This makes sense because
after the delete performed in the previous line, only 2 rules remain (the 2°¢ one being the
one which was earlier 3'4).

The net result
After all the steps outlined above, the iptables listing of chains OUTPUT and OUTACCEPT
should look like what is shown in listing 20.

Listing 20: The final result

Chain OUTPUT (policy DROP 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
1 421 71264 OUTACCEPT all -- any any anywhere anywhere

Chain OUTACCEPT (1 references)

® 9 o v e W N e

num pkts bytes target prot opt in out source destination
1 14 980 ACCEPT all -- any 1lo anywhere anywhere
2 407 70284 ACCEPT all -- any eth0 anywhere anywhere

This setup means that any packet going out of the machine will be sent to chain OUTACCEPT,
which only matches packets exiting through either eth0 or 1o interfaces.

Packets which do not match will then return to chain ouTPUT and since there are no more
rules to check, they will get processed according to the chain policy of chain OUTPUT.

It is important to know the behaviour of custom chains. Let’s assume a rule, say rule number n
of some chain X references a custom chain, Y. When a packet matches that rule, and is passed
to chain Y, iptables checks it against all the rules in Y, one by one. If some rule matches, it gets
applied. If none of the rules match, then the control is sent back to the parent chain, X, where
execution continues from rule n + 1. If n was the last rule of chain X, then the chain policy of
chain X gets applied to the packet.

The flow can be understood from figure 5.

7/ chainl

N rulel # chain2
- rule2 > rulel
N niles 3 rule2
Ly rule4 «— rule3
e rule5

Figure 5: The flow of control in case of custom-chains

3.5.6 Logging

iptables allows us to log matches, by default to the file /var/log/messages. Logging is done
by specifying the jump target of a rule as LOG. This instructs iptables to write log entries for
packets matching that rule.

More often than not, one wishes to do more than just logging, for the packets that match a rule.
The standard method is to write two identical rules (in terms of match criteria), but give them
different jump targets. Consider the rules in listing 21.

Listing 21: iptables rules to log and drop packets

-A INPUT -s 10.1.34.40 -j LOG # make a log entry for each matching packet
—A INPUT -s 10.1.34.40 -j DROP # also drop each matching packet

13

[Rt I SR SR

10

It is a good practice to create a custom chain, which logs and drops any packet passed to it, for
this same purpose. It removes redundancy from the main chains (by allowing us to write a single
rule where earlier there were two). It also improves efficiency because the matching process for
the packet occurs only once, instead of twice. Listing 22 shows how to do the same thing as listing

21 using a custom chain.

Listing 22: iptables rules to log and drop packets using a user-defined chain

Create the LOGDROP chain
iptables -N LOGDROP
iptables —-A LOGDROP \\

-3 LOG \\

--log-prefix "LOGDROP "
iptables -A LOGDROP \\

-3j DROP

H= o 4 o W

Log and drop all packets from 10.

iptables -A INPUT -s 10.1.34.40 -3

create a chain called LOGDROP
append this rule to chain LOGDROP
jump to action LOG

with log-prefix LOGDROP (optional)
append to chain LOGDROP

drop the packet

1.34.40
LOGDROP # notice the action specified as LOGDROP

The custom-chains method is especially helpful in case of rules where the matching criteria are

many, and complex.

3.5.7 IPTables matches

-p, —-protocol :
iptables -A input -p tcp

This match is used to check for certain protocols. Examples of protocols are TCP, UDP and
ICMP. The protocol must either be one of the internally specified TCP, UDP or ICMP. It
may also take a value specified in the /etc/protocols file, and if it can’t find the protocol
there it will reply with an error. The protocl may also be an integer value. For example,
the ICMP protocol is integer value 1, TCP is 6 and UDP is 17. Finally, it may also take the
value ALL. ALL means that it matches only TCP, UDP and ICMP. If this match is given
the integer value of zero (0), it means ALL protocols, which in turn is the default behavior,
if the ——protocol match is not used. This match can also be inversed with the ! sign, so
-—protocol ! tcp would mean to match UDP and ICMP.

-s, --src, --source :

iptables -A INPUT -s 192.

168.1.1

This is the source match, which is used to match packets, based on their source IP address.
The main form can be used to match single IP addresses, such as 192.168.1.1. It could

also be used with a netmask in a

CIDR "bit" form, by specifying the number of ones (1s)

on the left side of the network mask. This means that we could for example add /24 to
use a 255.255.255.0 netmask. We could then match whole IP ranges, such as our local
networks or network segments behind the firewall. The line would then look something like
192.168.0.0/24. This would match all packets in the 192.168.0.x range. Another way is to
do it with a regular netmask in the 255.255.255.255 form (i.e., 192.168.0.0/255.255.255.0).
We could also invert the match with an ! just as before. If we were, in other words, to use a

match in the form of ——source

! 192.168.0.0/24, we would match all packets with

a source address not coming from within the 192.168.0.x range. The default is to match all

IP addresses.

-d, --dst, --destination :

iptables -A INPUT -d 192.

168.1.1

The --destination match is used for packets based on their destination address or addresses.
It works pretty much the same as the ——source match and has the same syntax, except
that the match is based on where the packets are going to. To match an IP range, we can add
a netmask either in the exact netmask form, or in the number of ones (1’s) counted from the

14

left side of the netmask bits. Examples are: 192.168.0.0/255.255.255.0 and 192.168.0.0/24.
Both of these are equivalent. We could also invert the whole match with an ! sign, just
as before. ——destination ! 192.168.0.1 would in other words match all packets
except those destined to the 192.168.0.1 IP address.

-i, --in-interface :
iptables —-A INPUT -i ethO

This match is used for the interface the packet came in on. Note that this option is only
legal in the INPUT, FORWARD and PREROUTING chains and will return an error message
when used anywhere else. The default behaviour of this match, if no particular interface is
specified, is to assume a string value of 4. The + value is used to match a string of letters
and numbers. A single + would, in other words, tell the kernel to match all packets without
considering which interface it came in on. The + string can also be appended to the type
of interface, so eth+ would be all Ethernet devices. We can also invert the meaning of this
option with the help of the ! sign. The line would then have a syntax looking something
like -i ! ethO, which would match all incoming interfaces, except eth0.

-0, --out-interface :
iptables —-A FORWARD -o ethO

The ——out-interface match is used for packets on the interface from which they are leav-
ing. Note that this match is only available in the OUTPUT, FORWARD and POSTROUT-
ING chains, the opposite in fact of the ——in-interface match. Other than this, it works
pretty much the same as the ——in-interface match. The + extension is understood as
matching all devices of similar type, so eth+ would match all eth devices and so on. To
invert the meaning of the match, you can use the ! sign in exactly the same way as for the
—-—in-interface match. If no -—out-interface is specified, the default behaviour for
this match is to match all devices, regardless of where the packet is going.

-f, --fragment :
iptables -A INPUT -f

This match is used to match the second and third part of a fragmented packet. The reason
for this is that in the case of fragmented packets, there is no way to tell the source or
destination ports of the fragments, nor ICMP types, among other things. Also, fragmented
packets might in rather special cases be used to compound attacks against other computers.
Packet fragments like this will not be matched by other rules, and hence this match was
created. This option can also be used in conjunction with the ! sign; however, in this case
the ! sign must precede the match, i.e. ! -f. When this match is inverted, we match all
header fragments and /or unfragmented packets. What this means, is that we match all the
first fragments of fragmented packets, and not the second, third, and so on. We also match
all packets that have not been fragmented during transfer. Note also that there are really
good defragmentation options within the kernel that you can use instead. As a secondary
note, if you use connection tracking you will not see any fragmented packets, since they are
dealt with before hitting any chain or table in iptables.

3.5.8 Implicit matches

Here we describe those matches which are loaded implicitly. Implicit matches are implied, taken
for granted, automatic. For example when we match on ——protocol tcp without any further
criteria. There are currently three types of implicit matches for three different protocols. These
are TCP matches, UDP matches and ICMP matches. The TCP based matches contain a set of
unique criteria that are available only for TCP packets. UDP based matches contain another set
of criteria that are available only for UDP packets.

TCP Matches

15

These matches are protocol specific and are only available when working with TCP packets and
streams. To use these matches, one has to specify ——protocol tcp on the command line before
trying to use them. Note that the ——protocol tcp match must be to the left of the protocol
specific matches.

--sport, --source-port :
iptables —-A INPUT -p tcp —-—-sport 22

The ——source-port match is used to match packets based on their source port. Without
it, we imply all source ports. This match can either take a service name or a port number.
If we specify a service name, the service name must be in the /etc/services file, since
iptables uses this file in which to find. If we specify the port by its number, the rule will load
slightly faster, since iptables doesn’t have to check up the service name. However, the match
might be a little bit harder to read than if we use the service name. While writing a rule-
set consisting of 200 rules or more (large rule-set), we should definitely use port numbers,
since the difference is really noticeable. (On a slow server, this could make as much as 10
seconds difference, for a large rule-set containing 1000 rules or so). We can also use the
—-—source-port match to match a range of ports, ——source-port 22:80 for example.
This example would match all source ports between 22 and 80. If we omit specifying the
first port, port 0 is assumed (is implicit). ——source-port :80 would then match port
0 through 80. And if the last port specification is omitted, port 65535 is assumed. If one
were to write ——source-port 22:, it would signify a match for all ports from port 22
through port 65535. If we invert the port range, iptables automatically reverses the inversion,
i.e. ——source-port 80:22 is simply interpreted as ——source-port 22:80. We can
invert a match by adding a ! sign. For example, ~——source—-port ! 22 means match all
ports but port 22. The inversion could also be used together with a port range and would
then look like ——source-port ! 22:80, which would mean we want to match all ports
but ports 22 through 80. Note that this match does not handle multiple separated ports
and port ranges. For more information about those, look at the multiport match extension.

--dport, --destination-port :
iptables -A INPUT -p tcp —--dport 22

This match is used to match TCP packets according to their destination port. It uses
exactly the same syntax as the ——source-port match. It understands port and port
range specifications, as well as inversions. It also reverses high and low ports in port range
specifications, as above. The match will also assume values of 0 and 65535 if the high or
low port is left out in a port range specification. In other words, exactly the same as the
——source-port syntax.

--tcp-flags :
iptables -p tcp --tcp-flags SYN,FIN,ACK SYN

This match is used to match on the TCP flags in a packet. First of all, the match takes
a list of flags to compare (a mask) and secondly it takes list of flags that should be set to
1, or turned on. Both lists should be comma-delimited. The match knows about the SYN,
ACK, FIN, RST, URG, PSH flags, and it also recognizes the words ALL and NONE. ALL
and NONE is pretty much self describing: ALL means to use all flags and NONE means to
use no flags for the option. ——tcp-flags ALL NONE would in other words mean to check
all of the TCP flags and match if none of the flags are set. This option can also be inverted
with the ! sign. For example, if we specify | SYN,FIN,ACK SYN, we would get a match
that would match packets that had the ACK and FIN bits set, but not the SYN bit. Also
note that the comma delimitation should not include spaces.

--tcp-option :
iptables -p tcp —--tcp-option 16
This match is used to match packets depending on their TCP options. A TCP Option is a

specific part of the header. This part consists of 3 different fields. The first one is 8 bits long
and tells us which Options are used in this stream, the second one is also 8 bits long and

16

tells us how long the options field is. The reason for this length field is that TCP options
are, well, optional. To be compliant with the standards, we do not need to implement all
options, but instead we can just look at what kind of option it is, and if we do not support
it, we just look at the length field and can then jump over this data. This match is used
to match different TCP options depending on their decimal values. It may also be inverted
with the ! flag, so that the match matches all TCP options but the option given to the
match. For a complete list of all options, take a closer look at the Internet Engineering Task
Force who maintains a list of all the standard numbers used on the Internet.

UDP Matches

These matches are specific to UDP Packets. They are implicitly loaded when you specify the
——protocol UDP match and will be available after this specification. Note that UDP packets
are not connection oriented, and hence there is no such thing as different flags to set in the packet to
give data on what the datagram is supposed to do, such as open or closing a connection, or if they
are just simply supposed to send data. UDP packets do not require any kind of acknowledgment
either. If they are lost, they are simply lost (Not taking ICMP error messaging etc into account).
This means that there are quite a lot less matches to work with on a UDP packet than there is
on TCP packets.

--sport, --source-port :
iptables -A INPUT -p udp --sport 53

This match works exactly the same as its TCP counterpart.

--dport, --destination-port :
iptables -A INPUT -p udp —--dport 53

The same goes for this match as for ——source-port above. It is exactly the same as for
the equivalent TCP match, but here it applies to UDP packets.

ICMP Matches

ICMP packets are even more short-lived than UDP Packets, in that they are connectionless. The
ICMP protocol is mainly used for error reporting and for connection controlling and such. ICMP
is not a protocol subordinated to the IP protocol, but more of a protocol that augments the IP
protocol and helps in handling errors. The headers of ICMP packets are very similar to those
of the IP headers, but differ in a number of ways. The main feature of this protocol is the type
header, that tells us what the packet is for. One example is, if we try to access an unaccessible IP
address, we would normally get an ICMP host unreachable in return.

There is only one ICMP specific match available for ICMP packets, and hopefully this should
suffice. This match is implicitly loaded when we use the --protocol ICMP match and we get access
to it automatically. Note that all the generic matches can also be used, so that among other things
we can match on the source and destination addresses.

--icmp-type :
iptables —-A INPUT -p icmp —--icmp-type 8

This match is used to specify the ICMP type to match. ICMP types can be specified either by
their numeric values or by their names. Numerical values are specified in RFC 792. To find a
complete listing of the ICMP name values, run iptables —-protocol icmp —--help.
This match can also be inverted with the ! sign, for example: ——icmp-type ! 8. Note
that some ICMP types are obsolete, and others again may be “dangerous” for an unprotected
host since they may, among other things, redirect packets to the wrong places. The type
and code may also be specified by their typename, numeric type, and type/code as well. For
example ——icmp-type network-redirect, ——icmp-type 8 or ——icmp-type 8/0.
For a complete listing of the names, run iptables —-p icmp --help (short version of
the command mentioned previously).

17

3.5.9 Explicit matches

Explicit matches are those that have to be specifically loaded with the —m or ——match option.
State matches, for example, demand the directive —m state prior to entering the actual match that
we want to use. Some of these matches may be protocol specific . Some may be unconnected with
any specific protocol, for example connection states. The difference between implicitly loaded
matches and explicitly loaded ones, is that the implicitly loaded matches will automatically be
loaded when, for example, we match on the properties of TCP packets, while explicitly loaded
matches will never be loaded automatically.

Conmark match

The connmark match is used to match marks that has been set on a connection with the CONN-
MARK target. It only takes one option.

--mark :
iptables —-A INPUT -m connmark —--mark 12 -j ACCEPT

The mark option is used to match a specific mark associated with a connection. The mark
match must be exact, and if we want to filter out unwanted flags from the connection
mark before actually matching anything, we can specify a mask that will be ANDed to the
connection mark. For example, if we have a connection mark set to 33 (10001 in binary) on
a connection, and want to match the first bit only, we would be able to run something like
—--mark 1/1. The mask (00001) would be masked to 10001, so 10001 && 00001 equals 1,
and then matched against the 1.

Conntrack match

The conntrack match is an extended version of the state match, which makes it possible to match
packets in a much more granular way. It let’s you look at information directly available in the
connection tracking system. There are a number of different matches put together in the conntrack
match, for several different fields in the connection tracking system. These are compiled together
into the list below. To load these matches, you need to specify —-m conntrack.

--ctstate :
iptables —-A INPUT -p tcp -m conntrack —--ctstate RELATED

This match is used to match the state of a packet, according to the conntrack state. It is
used to match pretty much the same states as in the original state match. The valid entries
for this match are:

e INVALID

e ESTABLISHED
e NEW

e RELATED

e SNAT

e DNAT

The entries can be used together with each other separated by a comma. For exam-
ple, -m conntrack —--ctstate ESTABLISHED,RELATED. It can also be inverted by
putting a ! in front of ——ctstate. For example: -m conntrack ! --ctstate
ESTABLISHED, RELATED, which matches all but the ESTABLISHED and RELATED states.

--ctproto :
iptables -A INPUT -p tcp —-m conntrack —--ctproto TCP

This matches the protocol, the same as the ——protocol does. It can take the same types
of values, and is inverted using the ! sign. For example, -m conntrack ! —-—-ctproto
TCP matches all protocols but the TCP protocol.

18

--ctorigsrc :
iptables —-A INPUT -p tcp —-m conntrack —--ctorigsrc 192.168.0.0/24

——ctorigsrc matches based on the original source IP specification of the conntrack en-
try that the packet is related to. The match can be inverted by using a ! between the
—-—ctorigsrc and IP specification, such as ——ctorigsrc ! 192.168.0.1. It can
also take a netmask of the CIDR, form, such as ——ctorigsrc 192.168.0.0/24.

--ctorigdst :
iptables -A INPUT -p tcp —-m conntrack —--ctorigdst 192.168.0.0/24

This match is used exactly as the --ctorigsrc, except that it matches on the destination field
of the conntrack entry. It has the same syntax in all other respects.

--ctreplsrc :
iptables -A INPUT -p tcp —-m conntrack —--ctreplsrc 192.168.0.0/24

The —-ctreplsrc match is used to match based on the original conntrack reply source
of the packet. Basically, this is the same as the ——ctorigsrc, but instead we match the
reply source expected of the upcoming packets. This target can, of course, be inverted and
address a whole range of addresses, just the same as the the previous targets in this class.

--ctrepldst :
iptables -A INPUT -p tcp -m conntrack --ctrepldst 192.168.0.0/24

The ——ctrepldst match is the same as the ——ctreplsrc match, with the exception that
it matches the reply destination of the conntrack entry that matched the packet. It too can
be inverted, and accept ranges, just as the ——ctreplsrc match.

--ctstatus :
iptables —-A INPUT -p tcp -m conntrack —--ctstatus RELATED

This matches the status of the connection. It can match the following statuses:
e NONE - The connection has no status at all.

e EXPECTED - This connection is expected and was added by one of the expectation
handlers.

e SEEN REPLY - This connection has seen a reply but isn’t assured yet.

e ASSURED - The connection is assured and will not be removed until it times out or
the connection is closed by either end.

This can also be inverted by using the ! sign.
Limit match

The limit match extension must be loaded explicitly with the -m 1imit option. This match can,
for example, be used to advantage to give limited logging of specific rules etc. For example, we
could use this to match all packets that do not exceed a given value, and after this value has been
exceeded, limit logging of the event in question. Think of a time limit: We could limit how many
times a certain rule may be matched in a certain time frame, for example to lessen the effects of
DoS syn flood attacks. This is its main usage, but there are more usages, of course. The limit
match may also be inverted by adding a ! flag in front of the limit match. It would then be
expressed as —-m limit ! ——-limit 5/s.This means that all packets will be matched after they
have broken the limit.

To further explain the limit match, it is basically a token bucket filter (like delay pools in squid).
Consider having a leaky bucket where the bucket leaks X packets per time-unit. X is defined
depending on how many matching packets we get, so if we get 3 packets, the bucket leaks 3
packets per that time-unit. The ——1imit option tells us how many packets to refill the bucket
with per time-unit, while the ——1imit-burst option tells us how big the bucket is in the first
place. So, setting ——1imit 3/minute —-limit-burst 5, and then receiving 5 matches will

19

empty the bucket. After 20 seconds, the bucket is refilled with another token, and so on until the
--limit-burst is reached again or until they get used.

Let us consider the example below for further explanation of how this may look.

1. We set a rule with -m limit —-1limit 5/second —-limit-burst 10/second. The
limit-burst token bucket is set to 10 initially. Each packet that matches the rule uses a
token.

2. We get a packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a 1/1000 of a second.

3. The token bucket is now empty. Once the token bucket is empty, the packets that qualify
for the rule otherwise no longer match the rule and proceed to the next rule if any, or hit
the chain policy.

4. For each 1/5 s without a matching packet, the token count goes up by 1, upto a maximum
of 10. 1 second after receiving the 10 packets, we will once again have 5 tokens left.

5. And of course, the bucket will be emptied by 1 token for each packet it receives.
Limit match options:

--limit :
iptables -A INPUT -m limit --limit 3/hour

This sets the maximum average match rate for the limit match. It is specified with a number
and an optional time unit. The following time units are currently recognized: second/min-
ute/hour/day. The default value here is 3 per hour, or 3/hour. This tells the limit match
how many times to allow the match to occur per time unit (e.g. per minute).

--limit-burst :
iptables —-A INPUT -m limit —--limit-burst 5

This is the setting for the burst limit of the limit match. It tells iptables the maximum
number of tokens available in the bucket when we start, or when the bucket is full. This
number gets decremented by one for every packet that arrives, down to the lowest possible
value, 1. The bucket will be refilled by the limit value every time unit, as specified by the
——1limit option. The default ——1imit-burst value is 5.

Mark match

The mark match extension is used to match packets based on the marks they have set. A mark
is a special field, only maintained within the kernel, that is associated with the packets as they
travel through the computer. Marks may be used by different kernel routines for such tasks as
traffic shaping and filtering.

Mark match options:

--mark :
iptables -t mangle -A INPUT -m mark —--mark 1

This match is used to match packets that have previously been marked. Marks can be set
with the MARK target. All packets traveling through Netfilter get a special mark field
associated with them. Note that this mark field is not in any way propagated, within or
outside the packet. It stays inside the computer that made it. If the mark field matches the
mark, it is a match. The mark field is an unsigned integer, hence there can be a maximum of
4294967296 different marks. We may also use a mask with the mark. The mark specification
would then look like, for example, ——mark 1/1. If a mask is specified, it is logically ANDed
with the mark specified before the actual comparison.

Recent match

The recent match is a rather large and complex matching system, which allows us to match packets
based on recent events that we have previously matched. For example, if we would see an outgoing

20

IRC connection, we could set the IP addresses into a list of hosts, and have another rule that allows
identd requests back from the IRC server within 15 seconds of seeing the original packet.

Before we can take a closer look at the match options, let’s try and explain a little bit how it works.
First of all, we use several different rules to accomplish the use of the recent match. The recent
match uses several different lists of recent events. The default list being used is the DEFAULT
list. We create a new entry in a list with the set option, so once a rule is entirely matched (the set
option is always a match), we also add an entry in the recent list specified. The list entry contains
a timestamp, and the source IP address used in the packet that triggered the set option. Once
this has happened, we can use a series of different recent options to match on this information, as
well as update the entries timestamp, etc.

Finally, if we would for some reason want to remove a list entry, we would do this using the
--remove match option from the recent match. All rules using the recent match, must load the
recent module (-m recent) as usual. Before we go on with an example of the recent match, let’s
take a look at some of the options.

Recent match options (relevant ones):

--set :
iptables -A OUTPUT -m recent --set
This creates a new list entry in the named recent list, which contains a timestamp and the
source IP address of the host that triggered the rule. This match will always return success,
unless it is preceded by a ! sign, in which case it will return failure.

--rcheck :
iptables —-A OUTPUT -m recent —--name examplelist --rcheck
The --rcheck option will check if the source IP address of the packet is in the named list. If
it is, the match will return true, otherwise it returns false. The option may be inverted by
using the ! sign. In the later case, it will return true if the source IP address is not in the
list, and false if it is in the list.

--update :
iptables —-A OUTPUT -m recent —--name examplelist —--update
This match is true if the source combination is available in the specified list and it also
updates the last-seen time in the list. This match may also be reversed by setting the !
mark in front of the match. For example, ! -—update.

--remove :
iptables —-A INPUT -m recent —--name example —--remove
This match will try to find the source address of the packet in the list, and returns true if the
packet is there. It will also remove the corresponding list entry from the list. The command
is also possible to inverse with the ! sign.

--seconds :
iptables —-A INPUT -m recent —--name example —--check —--seconds 60
This match is only valid together with the --check and --update matches. The --seconds
match is used to specify how long since the "last seen" column was updated in the recent
list. If the last seen column was older than this amount in seconds, the match returns false.
Other than this the recent match works as normal, so the source address must still be in the
list for a true return of the match.

--hitcount :

iptables —-A INPUT -m recent —-name example —-check —--hitcount 20

The --hitcount match must be used together with the --check or --update matches and it
will limit the match to only include packets that have seen at least the hitcount amount of
packets. If this match is used together with the --seconds match, it will require the specified

21

hitcount packets to be seen in the specific timeframe. This match may also be reversed by
adding a ! sign in front of the match. Together with the --seconds match, this means that
a maximum of this amount of packets may have been seen during the specified timeframe.
If both of the matches are inversed, then a maximum of this amount of packets may have
been seen during the last minumum of seconds.

--rsource :
iptables -A INPUT -m recent —--name example —-rsource

The --rsource match is used to tell the recent match to save the source address and port in
the recent list. This is the default behavior of the recent match.

--rdest :
iptables -A INPUT -m recent —-—-name example —--rdest

The --rdest match is the opposite of the --rsource match in that it tells the recent match to
save the destination address and port to the recent list.

3.6 Some recommended Best Practices for iptables

Don’t set the default policy to DROP

All iptables chains have a default policy setting. If a packet doesn’t match any of the rules in
a relevant chain, it will match the default policy and will be handled accordingly. Setting the
default policy to DROP can bring about some unintended consequences.

Consider a situation where the INPUT chain contains quite a few rules allowing traffic, and the
default policy is set to DROP. Later on, another administrator logs into the server and flushes the
rules. This will render the server completely inaccessible immediately. All of the packets will be
dropped since they match the default policy in the chain.

Instead of using the default policy, it is recommended to place an explicit DROP/REJECT rule at
the bottom of the chain that matches everything. Thus the default policy can be left as ACCEPT
and this should reduce the chance of blocking all access to the server.

Remember localhost

Lots of applications require access to the lo interface. We must ensure that rules are setup so that
the 1o interface is not disturbed.

Split complicated rule groups into separate chains

It’s important to keep your iptables rules manageable. If you have a certain subset of rules that
may be a little complicated, consider breaking them out into their own chain. You can just add
in a jump to that chain from your default set of chains.

Use REJECT until you know your rules are working properly

When you’re writing iptables rules, you’ll probably be testing them pretty often. One way to
speed up that process is to use the REJECT target rather than DROP. You’ll get an immediate
rejection of your traffic (a TCP reset) instead of wondering if your packet is being dropped or if
it’s making it to your server at all. Once you’re done with your testing, you can flip the rules from
REJECT to DROP if you prefer.

Be stringent with your rules

Try to make your rules as specific as possible for your needs. For example, to allow ICMP pings
on servers (so that network tests can be run against them), one could easily add a rule into the
INPUT chain that looks like the one in listing 23.

Listing 23: Allow ping — non-stringent

iptables -A INPUT -p icmp -m icmp -3J ACCEPT

22

But it isn’t prudent to simply allow all ICMP traffic. There are many types of ICMP Control
Messages, but for our purpose here, only allowing echo-requests is sufficient (listing 24).

Listing 24: Allow ping — stringent

iptables -A INPUT -p icmp -m icmp --icmp-type 8 -3j ACCEPT

Use comments for obscure rules

We often write rules to cover edge cases that other administrators might not understand. It is
always wise to add comments explaining such rules.

Comments can be added using the —-m comment directive, as shown in listing 25. However, it
only accepts comments upto 256 chars in size.

Listing 25: Adding comments — the right way

iptables -A INPUT -s www.spamhost.org -m comment —--comment "block spamhost.org" -j DROP

These comments will appear in the iptables output on listing the current rules. They will also
appear in the saved iptables rules.

4 Applications

The applications of iptables are numerous. The following are some of the primary packet processing
techniques and their applications. Some of these have dedicated modules for their purpose, others
can be accomplished using the basic iptables functionalities :

Packet Filtering
Packet filtering is the most basic type of network packet processing. Packet filtering involves
examining packets at various points as they move through the kernel’s networking code and
making decisions about how the packets should be handled (accepted into the next stage of
processing, dropped completely without a reply, rejected with a reply, and so on).

Accounting
Accounting, as the name suggests, involves using byte and/or packet counters associated
with packet matching criteria to monitor network traffic volumes.

Connection Tracking

Connection tracking provides additional information that can match related packets in ways
that are otherwise impossible. For example, FTP (file transfer protocol) sessions can involve
two separate connections: one for control and one for data transfer. Connection tracking for
FTP monitors the control connection and uses knowledge of the FTP protocol to extract
enough information from the control interactions to identify the data connections when they
are created. This tracking information is then made available for use by packet processing
rules.

Packet mangling
Packet mangling involves making changes to packet header fields (such as network addresses
and port numbers) or payloads.

Network Address Translation (NAT)
Network address translation is a type of packet mangling that involves overwriting the source
and/or destination addresses and /or port numbers. Connection tracking information is used
to mangle related packets in specific ways. The term “Source NAT” (or just S-NAT or
SNAT) refers to NAT involving changes to the source address and/or port, and “Destination
NAT” (or just D-NAT or DNAT) refers to NAT involving changes to the destination address
and/or port.

23

I N S SO

Masquerading
Masquerading is a special type of SNAT in which one computer rewrites packets to make
them appear to come from itself. The computer’s IP address used is determined auto-
matically, and if it changes, old connections are destroyed appropriately. Masquerading is
commonly used to share an Internet connection with a dynamic IP address among a network
of computers.

Port Forwarding

Port forwarding is a type of DNAT in which one com- puter (such as a firewall) acts as a
proxy for one or more other computers. The firewall accepts packets addressed to itself from
the outside network, but rewrites them to appear to be addressed to other computers on the
inside network before sending them on to their new destinations. In addition, related reply
packets from the inside computers are rewritten to appear to be from the firewall and sent
back to the appropriate outside computer. Port forwarding is commonly used to provide
publicly accessible network services (such as web or email servers) by computers other than
the firewall, without requiring more than one public IP address. To the outside world, it
appears that the services are being provided by the proxy machine, and to the actual server,
it appears that all requests are coming from the proxy machine.

Load Balancing
Load balancing involves distributing connections across a group of servers so that higher
total throughput can be achieved. One way to implement simple load balancing is to set up
port forwarding so that the destination address is selected in a round-robin fashion from a
list of possible destinations.

5 Some specific techniques and their configuration

5.1 Port Knocking

Port knocking is a technique to secure ssh (or any other methods) access to the machine. It
involves knowing a pre-determined set of ports, which when “knocked” in sequence, open the ssh
port for the knocking IP. In other words, without performing a valid knock (telnet based connection
attempt on the set of ports, in the correct order), one cannot “unlock” the required port.

Portknocking is a a stealthy and robust system for network authentication across closed ports.
For instance, this can be used to avoid brute force attacks to ssh or ftp services.

Port knocking can be implemented using iptables in a number of ways, two of which we will discuss
here.

5.1.1 Implementation using custom-chains

this method uses the recent iptables module, to keep track of the ports knocked, and act accord-
ingly.
We will demonstrate how to setup a 4-port knocking system wherein the required ports to be

knocked are 10000,10001,10002 and 10003. Also, the user gets 30 seconds over which to perform
the knocking, otherwise he must start from stage 1.

Listing 26: iptables rules to setup port knocking

-N STAGE2

—-A STAGE2 -m recent —--name STAGEl —--remove
—-A STAGE2 -m recent —--name STAGE2 --set

-A STAGE2 -j LOG --log-prefix "INTO STAGE2: "

-N STAGE3
—-A STAGE3 -m recent —--name STAGE2 —--remove

24

10
11
12
13
14
15
16
17
18
19
20
21
22
23

W @ 9 U s W N

10
11

12

s w N

o w

—-A STAGE3 -m recent —--name STAGE3 --set
-A STAGE3 -j LOG --log-prefix "INTO STAGE3: "

-N STAGE4

—A STAGE4 -m recent —--name STAGE3 —--remove
—A STAGE4 -m recent —--name STAGE4 --set

-A STAGE4 -j LOG --log-prefix "INTO STAGE4: "

—A INPUT -m recent —--update —-—-name STAGEl

—A INPUT -p tcp --dport 10000 -m recent --set --name STAGEL

—-A INPUT -p tcp —--dport 10001 -m recent --rcheck --name STAGEl -3j STAGE2
—A INPUT -p tcp —--dport 10002 -m recent —--rcheck --name STAGE2 -3j STAGE3
—-A INPUT -p tcp —--dport 10003 -m recent --rcheck --name STAGE3 -3j STAGE4

—-A INPUT -p tcp --dport 22 -m recent —--rcheck --seconds 30 —--name STAGE4 -j ACCEPT

5.1.2 Using the PortknockO project iptables module

The PortKnockO Project is composed of two parts: an iptables extension (user space) and a
netfilter extension (kernel space). Both modules are used to implement Port Knocking

Following the steps described at http://portknocko.berlios.de/README.html, one can
install PortKnock0. Once installed, it provides a new iptables module, using which portknocking
can be setup very easily.

Listing 27 demonstrates setting up the same config as shown earlier, with custom chains.

Listing 27: iptables rules to setup port knocking with PortKnockO

iptables -A INPUT \\ # append to chain INPUT
-p tcp \\ # tcp packets
-m state \\ # load module state
——-state NEW \\ # only match NEW connections
-m pknock \\ # load module pknock
——knockports 10000,10001,10002,10003 \\# the ports for knocking
—-name SSH \\ # name
——time 30 \\ # max. allowed time between knocks
——strict \\ # if the user fails one knock in the
sequence he/she must start over
-m tcp \\ # load module tcp
—-—dport 22 \\ # destination port 22 (SSH)
-3 ACCEPT # ACCEPT if all matches are OK

The machine can then be accessed using telnet to knock the ports and then regular SSH (listing
28).

Listing 28: Accessing the machine

$ ssh user@someserver # won’t work

telnet someserver 10000 # first knock
telnet someserver 10001
telnet someserver 10002
telnet someserver 10003 # last knock

Ur O O

$ ssh user@someserver # will work now

5.2 Rate Limiting

iptables is commonly used for rate limiting, for bandwidth considerations. Rate limiting is also
used in various ways to secure the system, with iptables. Some of the relevant applications are as
described here.

25

http://portknocko.berlios.de/README.html

oo W N e

I S SR OO

5.2.1 Protecting against ping flood attacks

Here the limit module is used to keep check on the icmp echo-requests that are characteristic of
ping. The following rules setup reasonably tight ping flood protection :

Listing 29: iptables rules to protect against a ping flood attack

-A INPUT -p icmp --icmp-type echo-request -m limit --limit 60/minute --limit-burst
120 -j ACCEPT

-A INPUT -p icmp --icmp-type echo-request -m limit --1limit 1/minute --limit-burst 2
-3 LOG

—A INPUT -p icmp --icmp-type echo-request -j DROP

5.3 Connection Limiting

Connection limiting also has various uses. The connlimit module is used for connection limiting.

5.3.1 Limiting the number of SSH connections from a host (in parallel)

Often it is required to restrict the number of parallel ssh connections a user can make, to the
server. This can be effectively accomplished using iptables.

Listing 30: iptables rules to limit parallel SSH connections to 4 with logging

—A INPUT -p tcp --syn —-dport 22 -m connlimit --connlimit-above 4 -m limit --limit
1/minute --limit-burst 2 -j LOG
—A INPUT -p tcp —--syn —-dport 22 -m connlimit --connlimit-above 4 -3j REJECT

5.3.2 Bruteforce attack protection
This can be done by not allowing more than a specified number of connections, over a specific
time interval, from any IP.

For example, in listing we have configured things so as to not allow more then 10 connection
attempts within 60 seconds from any IP.

Listing 31: iptables rules to prevent more than 10 connections within 60 seconds from any IP

—A INPUT -m state —--state NEW -m tcp -p tcp --dport 22 -m recent —--name ssh_limit
——set

—A INPUT -m state —--state NEW -m tcp -p tcp --dport 22 -m recent —--name ssh_limit
—--rcheck --seconds 60 —--hitcount 10 -m limit --limit 1/minute --limit-burst 2 -3j LOG
—A INPUT -m state —--state NEW -m tcp -p tcp —--dport 22 -m recent —--name ssh_limit
——-rcheck --seconds 60 --hitcount 10 -3j REJECT --reject-with icmp-host-prohibited

6 iptables at IIIT-H

ITIIT-H Servers use iptables as their firewall mechanism. Most servers that interface with the
outside world have iptables configured quite thoroughly. However, after some analysis of the
configuration, certain improvements and optimizations can be suggested.

26

6.1 Suggestions for Optimization and Improvement
6.1.1 Optimizing iptables by creating user-defined chains

iptables allows for very complex and lengthy rulesets. Improper rule structure can lead to ineffi-
ciency in your packet filtering system which can in turn decrease effective bandwidth and serving
capabilities. It is important that you carefully consider the order and structure of your packet
filter layout.

The ultimate goal of packet filtering is to control and limit traffic to only that which you desire
to accept, send, and forward. The secondary goal is to get each packet out of iptables as soon as
possible by placing the packet on an ACCEPT or DROP target. While secondary, inefficiencies in
your iptables structure can render the packet filtering capabilities useless as effectively throttling
your bandwidth.

iptables allows you to create your own chains and add them as targets from rules on other (in-
cluding the default set of) chains. This allows us to create a shallow, wide decision tree instead
of a deep and narrow. While keeping in mind that if a packet gets incorrectly filtered, the whole
system is useless, the shallower a decision tree, the faster the packets will be filtered.

Packet start
etho (External) -
|
+ Is the packet from an outside IP?
AN
Yes No - DROP
|
ACCEPT -YES- + Is the packet tcp and to port 25 and a new connection?
NO

|
ACCEPT -YES- + Is the packet tcp and to port 53 and & new connection?
NO

|
ACCEPT -YES- + Is the packet udp and to port 53 and a new connection?
NO

|
ACCEPT -YES- + Is the packet tcp and to port 80 and a new connection?
NO

|
ACCEPT -YES- + Is the packet tcp and to port 110 and a new connection?
NO

|
ACCEPT -YES- + Is the packet tcp and to port 143 and a new connection?
NO

|
ACCEPT -YES- + Is the packet tcp and to port 443 and a new connection?
NO

|
ACCEPT -YES- + Is the packet icmp and of the type ICMP_ECHOREPLY?
NO

|
ACCEPT -YES- + Is the packet icmp and of the type ICMP_UNREACH?
NO

|
ACCEPT -YES- + Is the packet icmp and of the type ICMP_TIMXCEED?
NO

|
ACCEPT -YES- + Is the packet icmp and of the type ICMP_SOURCEQUENCH?
NO

|
ACCEPT -YES- + Is the part of an ESTABLISHED or RELATED connection?
NO

|
+ LOG packets here.
|

Policy - DROP

Figure 6: Deep, Narrow Chain decision tree

The chains whose decision trees are shown in figures 6 and 7 accomplish the exact same thing.
However, the second one is more efficient.

6.1.2 Reordering rules based on counters
In a chain, we must always try to place the hottest rules at the top. What this means is, the rules
which have the maximum likelihood of being matched, overall, should come first, and so on.

This ensures that each time a new packet is analyzed, the chances of it reaching the lower ends of
the chain are less. This improves efficiency.

One standard method of finding out whether to re-think your sequence of rules is to check the
hit counters that iptables maintains, using iptables -L -n -v and push the rules with higher

27

Packet start
etho (External) -

+ Is the packet from an outside IP?
I\
Yes Mo - DROP

|
ACCEPT -YES- + Is it part of an ESTABLISHED or RELATED connection?
NO

|
Is the packet tcp? + TCP_CHAIN -YES- - -o-crm oo e e
NO |
| ACCEPT -YES- + port 25,53,80,110,143,443 and a new connection?
Is the packet udp? + UDP_CHAIN -YES- ----------cmmmmmmmmaoaaaoan NO
o | |
| | RETURN
Is the packet icmp? + ICMP_CHAIN -YES- ------- | ACCEPT -YES- + port 53 and new?
NO | Mo
| |
+ LOG packets here. | RETURN
| |
Policy - DROP —meeeeeeeoeaooo
ACCEPT -YES- + type TCMP_ECHOREPLY?
NO

|
ACCEPT -YES- + type ICMP_UNREACH?
NO

|
ACCEPT -YES- + type ICMP_UNREACH?
NO

|
ACCEPT -YES- + type ICMP_UNREACH?
NO

|
RETURN

Figure 7: Shallower, Wider Chain decision tree

counts towards the top.

6.1.3 Logging and Dropping/Accepting with a single rule

As described earlier, in Subsubsection 3.5.6, we can add custom chains to reduce the amount of
processing for packets that have to be logged and accepted/dropped.

28

7 Man Pages

The rest of this document contains the man-pages which are relevant to the text. Kindly consult
them for reference.

The included man-pages are:
e iptables
e iptables-save

e iptables-restore

29

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

NAME

iptables — administration tool for IPv4 packet filtering arATN

SYNOPSIS

iptables[-t tablg { ~A|-D} chain rule-specification
iptables[—t tablg -1 chain [rulenun] rule-specification
iptables[-t tablgl =R chain rulenum rule-specification
iptables[-t tablgl —=D chain rulenum

iptables[-t tablgl —S[chain [rulenuni]

iptables [-t tablg] { —=F|-L|-Z} [chain [rulenun]] [options.]
iptables[-t tablgl =N chain

iptables [t tablgl —X [chain]

iptables[-t tablg] —P chain target

iptables[—t tablgl —E old-chain-name new-chain-name
rule-specification =rhatches.].[target]

match =—m matchnamé¢per-match-options

target =j targetname[per-target—optiong

DESCRIPTION

Iptables is used to set up, maintain, and inspect the tables of IPv4 packet filter rules in thedrimeix k
Several different tables may be defined. Each table contains a number of built-in chains and may also con-
tain user-defined chains.

Each chain is a list of rules which can match a set ofgiackEachule specifies what to do with a patk
that matches. This is called a ‘target’, which may be a jump to a user-defined chain in the same table.

TARGETS

A firewall rule specifies criteria for a pagkand a tayet. Ifthe packet does not match, the next rule in the
chain is the examined; if it does match, then the next rule is specified by the value of the target, which can
be the name of a user-defined chain or one of the special Y&l@&SPT, DROP, QUEUE or RETURN.

ACCEPT means to let the packet througpROP means to drop the packet on the loQUEUE means

to pass the packet to userspaidow the packet can be reweil by a serspace process differs by the-par
ticular queue handler2.4.x and 2.6.x kernels up to 2.6.13 include ifthequeue queue handlerKernels
2.6.14 and later additionally include thfnetlink_queue queue handlerPackets with a target of QEUE

will be sent to queue number '0’ in this case. Please also sBE-@EEUE target as described later in this
man page.)RETURN means stop tkersing this chain and resume at the next rule in the previous (calling)
chain. Ifthe end of a built-in chain is reached or a rule in a built-in chain wijetRETURN is matched,

the target specified by the chain pyldetermines the fate of the packet.

TABLES

There are currently three independent tables (which tables are presepntiateadepends on thesknel
configuration options and which modules are present).

-t, ——table table
This option specifies the packet matching table which the command should operate oneri the k
nel is configured with automatic module loading, an attempt will be made to load the appropriate
module for that table if it is not already there.

The tables are as follows:

filter: This is the default table (if no —t option is passed). It contains ulieil chainsINPUT
(for packets destined to local set&), FORWARD (for packets being routed through the
box), andOUTPUT (for locally-generated packets).

iptables 1.4.10 1

IPTABLES(8)

OPTIONS

iptables 1.4.10 IRPNBLES(8)

nat: This table is consulted when a packet that creates/@arection is encountered. It con-

sists of three Wilt-ins: PREROUTING (for altering packets as soon asytleme in),
OUTPUT (for altering locally-generated pasts before routing), anBOSTROUTING
(for altering packets as there about to go out).

mangle

This table is used for specialized pecklteration. Until kernel 2.4.17 it had dvuilt-in
chains:PREROUTING (for altering incoming packets before routing) addTPUT (for
altering locally-generated packets before routing). Since kernel 2.4.18, threeoltier b
chains are also supporteddPUT (for packets coming into the box itselJORWARD
(for altering packets being routed through the box), B&ABTROUTING (for altering
packets as tlyeare about to go out).

raw: This table is used mainly for configuringemptions from connection tracking in combina-

tion with the NORACK tamget. Itregisters at the netfilter hooks with higher priority and is
thus called before ip_conntrack, oryasther IP tables. It provides the followingili-in
chains:PREROUTING (for packets arriving via annetwork interface) OUTPUT (for
packets generated by local processes)

The options that are recognizediptables can be divided into seral different groups.
COMMANDS

These options specify the desired action to perform. Only one of them can be specified on the command

line unless otherwise stated h&ldor long versions of the command and option names, you need to use
only enough letters to ensure th@ables can differentiate it from all other options.

—-A, ——appendchain rule-specification

Append one or more rules to the end of the selected chain. When the source and/or destination
names resobyto nore than one address, a rule will be added for each possible address combina-
tion.

-D, ——deletechain rule-specification
—-D, ——deletechain rulenum

Delete one or more rules from the selected chain. There argetsions of this command: the
rule can be specified as a number in the chain (starting at 1 for the first rule) or a rule to match.

—I, ——insert chain [rulenun] rule-specification

Insert one or more rules in the selected chain as tee gile number So, if the rule number is 1,
the rule or rules are inserted at the head of the cfdiis is also the default if no rule number is
specified.

-R, ——replacechain rulenum rule-specification

Replace a rule in the selected chain. If the source and/or destination names teesalitiple
addresses, the command wdllf Rulesare numbered starting at 1.

-L, ——list [chair]

List all rules in the selected chain. If no chain is selected, all chains are listedaé&ii other
iptables command, it applies to the specified table (filter is the defaulthTsouls get listed by
iptables -t nat —n -L

Please note that it is often used with #meoption, in order tooid long reverse DNS lookupsit

is legd to specify the-Z (zero) option as well, in which case the chain(s) will be atomically listed
and zeroed. The exact output is affected by the otlgem@ents gien. The exact rules are sup-
pressed until you use

iptables -L -v

=S, ——list-rules [chain]

iptables 1.4.10

Print all rules in the selected chaitfi.no chain is selected, all chains are printed lj)ables-see.
Like every other iptables command, it applies to the specified table (filter is the default).

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

—F, ——flush [chain]
Flush the selected chain (all the chains in the table if nonges)giThisis equvalent to deleting
all the rules one by one.

—Z, ——zero[chain [rulenuni]
Zero the packet and byte counters in all chains, or only tkea ghain, or only the gien rule in a
chain. It is lgd to specify the-L, —-list (list) option as well, to see the counters immediately
before thg are cleared. (See aba)

—N, ——new-chainchain
Create a ne user-defined chain by thevgh name. Therenust be no target of that name already.

—X, ——delete—chain[chain]
Delete the optional user-defined chain specifielere must be no references to the chafn.
there are, you must delete or replace the referring rules before the chain can be tetetddin
must be emptyi.e. not contain gnrules. Ifno argument is gen, it will attempt to deletevery
non-builtin chain in the table.

—P, ——policy chain taget
Set the polig for the chain to the gén target. Sedhe sectionTARGETS for the lgd targets.
Only built-in (non-user-defined) chains carvégolicies, and neither wlt-in nor userdefined
chains can be polctargets.

—E, ——rename-chainold-chain new-chain
Rename the user specified chain to the user supplied nemsis cosmetic, and has no effect on
the structure of the table.

-h Help. Gie a ¢€urrently very brief) description of the command syntax.

PARAMETERS

The following parameters makup a ule specification (as used in the add, delete, insert, replace and
append commands).

['] —p, ——protocol protocol

The protocol of the rule or of the packet to check. The specified protocol can betopeuap,
udplite, icmp, esp ah, sctp or all, or it can be a numeric value, representing one of these proto-
cols or a different oneA protocol name from /etc/protocols is also além. A"!" argument
before the protocol irerts the test. The number zero is eglént toall. Protocolall will match

with all protocols and is taken as default when this option is omitted.

['] —s, ——sourceaddresf/maskh,...]

Source specificatiorAddresscan be either a network name, a hostname, aonletl’? address
(with /masR, or a plain IP address. Hostnames will be resolved once lmftye the rule is sub-
mitted to the krnel. Pleasaote that specifying gmame to be resolved with a remote query such
as DNS is a really bad ided@he maskcan be either a network mask or a plain numdpescifying

the number of ¥ at he left side of the network mask. Thus, a maskR4fis equvaent to
255.255.255.0 A "I" argument before the address specificatiorenits the sense of the address.
The flag——srcis an alias for this option. Multiple addresses can be specified, but théxpalhd

to multiple rules (when adding with —A), or will cause multiple rules to be deleted (with —D).

['] —d, ——destinationaddres§/mash[,...]

Destination specification. See the description ofthésource) flag for a detailed description of
the syntax. The flag—dstis an alias for this option.

—j, ——jump target

iptables 1.4

This specifies the target of the rule; i.e., what to do if thegiatlatches it. The target can be a
userdefined chain (other than the one this rule is in), one of the special builtin targets which
decide the fate of the packet immediately an etension (SeeEXTENSIONS below). If this

option is omitted in a rule (aneg is not used), then matching the rule wilvbao efect on the
packets fate, but the counters on the rule will be incremented.

.10 3

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

—g, ——gotochain
This specifies that the processing should continue in a user specified chaie. tmlik-jump
option return will not continue processing in this chaim instead in the chain that called us via
——jump.

['] =i, ——in—interface name
Name of an interface via which a packet was k&ce{only for packets entering thé&PUT,
FORWARD and PREROUTING chains). Wherthe "I" argument is used before the inted
name, the sense isvimted. If the interface name ends in a "+", thely amterface which bgins
with this name will match. If this option is omitted yanterface name will match.

['] —o, ——out-interface name
Name of an integfce via which a packet is going to be sent (for packets enterif@iR&/ARD,
OUTPUT and POSTROUTING chains). Wherthe "I" agument is used before the intmé
name, the sense isvirted. If the interface name ends in a "+", thely amerface which bgins
with this name will match. If this option is omitted,yanterface name will match.

[1] —f, ——fragment
This means that the rule only refers to second and further fragments of fragmenssd. p8oice
there is no \ay to tell the source or destination ports of such a packet (or ICMP type), such a
paclet will not match ay rules which specify themWhen the "I" argument precedes the "—f"
flag, the rule will only match head fragments, or unfragmented packets.

—c, ——set—counterspadkes bytes
This enables the administrator to initialize the gaeind byte counters of a rule (duriNSERT,
APPEND, REPLACE operations).

OTHER OPTIONS
The following additional options can be specified:

-v, ——verbose
Verbose output. This option makes the list commandvshe interice name, the rule options (if
ary), and the TOS masks. The patland byte counters are also listed, with the suffix 'K’, ‘M’ or
'G’ for 1000, 1,000,000 and 1,000,000,000 multipliers respeygt{but see the-x flag to change
this). For appending, insertion, deletion and replacement, this causes detailed information on the
rule or rules to be printed.

-n, ——numeric
Numeric output. IP addresses and port numbers will be printed in numeric f@yneefault, the
program will try to display them as host names, network names, or services\glappécable).

-X, ——exact
Expand numbers. Display the exact value of the packet and byte counters, instead of only the
rounded number in K'(multiples of 1000) Ms (multiples of 1000K) or & (multiples of 1000M).
This option is only relant for the-L command.

——line—-numbers
When listing rules, add line numbers to thgibaing of each rule, corresponding to that le’
position in the chain.

——modprobe=command
When adding or inserting rules into a chain, ce@mando load ay necessary modules (tgets,
match extensions, etc).

MATCH EXTENSIONS
iptables can use extended packet matching modules. These are loadeavayswimplicitly, when—p or
——protocol is specified, or with them or ——match options, followed by the matching module name; after
these, various extra command line options becoveiéable, depending on the specific moduMou can
specify multiple extended match modules in one line, and you can ush tire-—help options after the
module has been specified to reedielp specific to that module.

The following are included in the base package, and most of these can be preced&dtbynadt the

iptables 1.4.10 4

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

sense of the match.

addrtype
This module matches pagts based on theaddress type. Address types are used within the kernel net-
working stack and categorize addresses into various groups.xabedefinition of that group depends on
the specific layer three protocol.

The following address types are possible:

UNSPEC
an unspecified address (i.e. 0.0.0.0)

UNICAST
an unicast address

LOCAL
a local address

BROADCAST
a lroadcast address

ANYCAST
an anycast packet

MULTICAST
a multicast address

BLACKHOLE
a Hackhole address

UNREACHABLE
an unreachable address

PROHIBIT
a prohibited address

THROW
FIXME

NAT FIXME
XRESOLVE

[1] ——src—-typetype
Matches if the source address is ofegitype

[!] ——dst-typetype
Matches if the destination address is akgitype

—=limit-iface—in
The address type checking can be limited to the interface the packet is coming in. This option is
only valid in thePREROUTING, INPUT andFORWARD chains. It cannot be specified with the
——limit-iface—out option.

——limit-iface—out
The address type checking can be limited to the interface thetgaalfoing out. This option is
only valid in thePOSTROUTING, OUTPUT and FORWARD chains. It cannot be specified
with the——limit-iface—in option.

ah
This module matches the SPIs in Authentication header of IPsec packets.

['] ——ahspispi:spi]
cluster
Allows you to deply gatevay and back-end load-sharing clusters without the need of load-balancers.

This match requires that all the nodes see the same packets. Thus, the cluster match decides if this node has

iptables 1.4.10 5

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

to handle a packetygn the following options:

——cluster—total-nodesnum
Set number of total nodes in cluster.

[!] ——cluster—local-nodenum
Set the local node number ID.

['] ——cluster-local-nodemaskmask
Set the local node number ID mask. You can use this option insteaglaéter—local-node

——cluster—hash-seedalue
Set seed value of the Jenkins hash.

Example:

iptables —A PREROUTING -t mangle —i ethl —m cluster ——cluster—total-nodes 2 ——clus-
ter-local-node 1 ——cluster—hash—seed Oxdeadbeef —j MARK ——set-mdiitk Oxf

iptables —A PRERUTING -t mangle -i eth2 —m cluster ——cluster-total-nodes 2 --clus-
ter-local-node 1 ——cluster—hash—seed Oxdeadbeef —j MARK -—set—-mdiitk Oxf

iptables ~A PREROUTING -t mangle —i ethl -m mark ! ——markfbxf DROP
iptables ~A PREROUTING -t mangle —i eth2 —-m mark ! ——markfbxf DROP
And the following commands to maldl nodes see the same packets:
ip maddr add 01:00:5e:00:01:01vdeth1
ip maddr add 01:00:5e:00:01:02vckth2
arptables —A OUTPUT -o ethl ——h-length 6 —j mangle ——mangle-mac-s 01:00:5e:00:01:01

arptables -A INPUT -i ethl --h-length 6 —-destination-mac 01:00:5e:00:01:01 —j mangle
——mangle—mac—d 00:zz:yy:xx:5a:27

arptables —A OUTPUT -o eth2 ——h-length 6 —j mangle ——mangle-mac-s 01:00:5e:00:01:02

arptables —A INPUT —-i eth2 ——h-length 6 —-destination—-mac 01:00:5e:00:01:02 —j mangle
——mangle-mac-d 00:zz:yy:xx:5a:27

In the case of TCP connections, pickapility has to be disabled te@d marking TCP ACK packets com-
ing in the reply direction as valid.

echo 0 > /proc/sys/net/neffilter/nf_conntrack _tcp_loose

comment
Allows you to add comments (up to 256 characters) yaae.

——commentcomment

Example:
iptables —A INPUT -i ethl -m comment ——comment "my local LAN"

connbytes
Match by hev mary bytes or packets a connection (or one of the flews constituting the connection) has
transferred so faor by average bytes per packet.

The counters are 64-bit and are thus not expectegetticy ;)

The primary use is to detect longéd downloads and mark them to be scheduled using a lower priority
band in traffic control.

The transferred bytes per connection can also be viewed through ‘conntrack —L* and accessed via ctnetlink.

NOTE that for connections which ¥& o accounting information, the match willvedys return false. The
"net.netfiltemf_conntrack_acct" sysctl flag controls whethew connections will be byte/packet counted.
Existing connection flows will not be gaining/losing a/the accounting structure when be sysctl flag is
flipped.

iptables 1.4.10 6

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

['] ——connbytesfrom|[:to]
match packets from a connection whose ptalhytes/aerage packet size is more than FROM and
less than © bytes/packts. if TO is anitted only FROM check is done. "I" is used to match pack-
ets not falling in the range.

——connbytes—dir{original [reply |both}
which packets to consider

——connbytes—mod¢g packetgbytegdavgpkt}
whether to check the amount of patk number of bytes transferred or therage size (in bytes)
of all packets receed so far. Note that when "both" is used together witldikt”, and data is
going (mainly) only in one direction (for example HTTP), tiverage packet size will be about
half of the actual data packets.

Example:
iptables .. -m connbytes ——connbytes 10000:100000 ——connbytes—dir both ——connbytes—mode
bytes ...
connlimit
Allows you to restrict the number of parallel connections to @&seer client IP address (or client address
block).

['] =—connlimit-aboven
Match if the number of existing connections is (not)vaho

——connlimit-mask prefix_length
Group hosts using the prefix length. For IPv4, this must be a number between (including) 0 and

32. For IPv6, between 0 and 128.
Examples:

dlow 2 telnet connections per client host
iptables —A INPUT —p tcp ——syn ——dport 23 —m connlimit ——connlimit-veb® § REJECT

you can also match the other way around:
iptables —A INPUT —p tcp ——syn ——dport 23 —m connlimit ! ——connlimit-ab®d { ACCEPT

limit the number of parallel HTTP requests to 16 per class C sized network (24 bit netmask)
iptables —p tcp ——syn ——dport 80 —m connlimit ——connlimit~abd —connlimit—-mask 24 —j
REJECT

limit the number of parallel HTTP requests to 16 for the link local network
(ipv6) ipbtables —p tcp ——syn ——dport 80 —s fe80::/64 —m connlimit ——connlimiireald6
——connlimit-mask 64 —j REJECT

connmark
This module matches the netfilter mark field associated with a connection (which can be set using the

CONNMARK target below).

['] ——mark valug/mask
Matches packets in connections with theegimark value (if a mask is specified, this is logically
ANDed with the mark before the comparison).

conntrack
This module, when combined with connection trackingwalaccess to the connection tracking state for

this packet/connection.

[!] ——ctstatestatelist
statelistis a comma separated list of the connection states to mRutsible states are listed

below.

['] ——ctproto l4proto
Layer-4 protocol to match (by number or name)

iptables 1.4.10 7

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

[!] ——ctorigsrc addresfmask
[!] ——ctorigdst addres§/mask
[!] ——ctreplsrc addresfmask

['] ——ctrepldst addres§fmask
Match against original/reply source/destination address

[!] ——ctorigsrcport port
['] ——ctorigdstport port
[!] ——ctreplsrcport port

[!] ——ctrepldstport port
Match against original/reply source/destination port (TCP/UDP/etc.) or GRE k

['] ——ctstatusstatelist
statuslistis a comma separated list of the connection statuses to match. Possible statuses are listed
below.

[!] ——ctexpire timg:timg]
Match remaining lifetime in seconds againstegivalue or range of values (inclus)

——ctdir {ORIGINAL |REPLY}
Match packets that are Wing in the specified direction. If this flag is not specified at all, matches
packets in both directions.

States for—ctstate

INVALID
meaning that the packet is associated with no known connection

NEW meaning that the packet has starteda cennection, or otherwise associated with a connection
which has not seen packets in both directions, and

ESTABLISHED
meaning that the packet is associated with a connection which has seen packets in both directions,

RELATED
meaning that the packet is starting avrmennection, but is associated with an existing connection,
such as an FTP data transfaran ICMP error.

UNTRACKED
meaning that the paekis not tracked at all, which happens if you use th& RIGCK target in
raw table.

SNAT A virtual state, matching if the original source address differs from the reply destination.
DNAT A virtual state, matching if the original destination differs from the reply source.
Statuses for—ctstatus

NONE None of the bel.

EXPECTED
This is an expected connection (i.e. a conntrack helper set it up)

SEEN_REPLY
Conntrack has seen packets in both directions.

ASSURED
Conntrack entry should wer be arly-expired.

CONFIRMED
Connection is confirmed: originating packet has left box.

iptables 1.4.10 8

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

cpu
['] =—cpu number
Match cpu handling this paek cpus are numbered from 0 to NR_CPUS-1 Can be used in combi-
nation with RPS (RemoteaBket Steering) or multiqueue NICs to spread mekwraffic on difer-
ent queues.
Example:
iptables -t nat -A PREROUTING —p tcp ——dport 80 -m cpu ——cpu 0 —j REDIRECT —-to—port 8080
iptables -t nat —-A PREROUTING —p tcp ——dport 80 -m cpu ——cpu 1 —j REDIRECT —--to—port 8081
Available since Linux 2.6.36.
dccp
[!] ——source—port——sport port[:port]
[!] ——destination—port,——dport port[: port]
[!] ——dccp-typesmask
Match when the DCCP packet type is one of 'mask’. 'mask’ is a comma-separated listaif pack
types. Rclet types are:REQUEST RESPONSE [ATA ACK DATAACK CLOSEREQ
CLOSE RESET SYNC SYNCACK INVALID .
['] ——dccp—optionnumber
Match if DCP option set.
dscp
This module matches the 6 bit DSCP field within the TOS field in the IP heB&&P has superseded
TOS within the IETF.
['] ——dscpvalue
Match against a numeric (decimal or hex) value [0-63].
['] ——dscp-clas<lass
Match the DifServ class. This value may beyasf the BE, EFAFxx or CSx classes. It will then
be cowerted into its according numeric value.
ecn
This allavs you to match the ECN bits of the IPv4 and TCP hedgeéN is the Explicit Congestion Notifi-
cation mechanism as specified in RFC3168
['] ——ecn—tcp—cwr
This matches if the TCP ECN CWR (Congestion WimdReceved) bit is set.
['] ——ecn—tcp—ece
This matches if the TCP ECN ECE (ECN Echo) bit is set.
['] ——ecn-ip—ectnum
This matches a particular IPv4 ECT (ECN-Capable Transport). Yee bagpecify a number
between ‘0’ and ‘3'.
esp

This module matches the SPIs in ESP header of IPsec packets.

['] ——espspispi[: spi]
hashlimit
hashlimit uses hashutkets to @press a rate limiting match (&khe limit match) for a group of connec-
tions using asingleiptables rule. Grouping can be done per-hostgroup (source and/or destination address)
and/or per-port. It gies you the ability to expresdN'packets per time quantum per group":

matching on source host
"1000 packets per second famegy host in 192.168.0.0/16"

iptables 1.4.10 9

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

matching on source port
"100 packets per second foregy service of 192.168.1.1"

matching on subnet
"10000 packets per minute foreey /28 subnet in 10.0.0.0/8"

A hash limit option £—hashlimit-upto, ——hashlimit-above) and ——hashlimit-nameare required.

——hashlimit-upto amounf/second/minute|/hour|/day]
Match if the rate is bel® or equal to amountquantum. It is specified as a numbeith an
optional time quantum suffix; the default is 3/hour.

——hashlimit—above amounl/second/minute|/hour|/day]
Match if the rate is abv@ amountquantum.

——hashlimit-burst amount
Maximum initial number of pa@ks to match: this number gets recharged by wag ¢ime the
limit specified abwe is rot reached, up to this number; the default is 5.

——hashlimit—-mode{ srcip|srcport|dstip|dstport} ...
A comma-separated list of objects todakto consideration. If no ——hashlimit—-mode option is
given, hashlimit acts li& limit, but at the expengt d doing the hash housekeeping.

——hashlimit-srcmask prefix
When —-hashlimit-mode srcip is used, all source addresses encountered will be grouped accord-
ing to the gien prefix length and the so-created subnet will be subject to hashpieditx must be
between (inclusie) 0 and 32. Note that ——hashlimit—-srcmask 0 is basically doing the same thing
as not specifying srcip for ——hashlimit—-mode, but is technically more exgensi

——hashlimit—-dstmask prefix
Like —hashlimit—srcmask, but for destination addresses.

——hashlimit-namefoo
The name for the /proc/net/ipt_hashlimit/foo entry.

——hashlimit-htable-sizebuckds
The number of buckets of the hash table

——hashlimit—-htable—-max entries
Maximum entries in the hash.

——hashlimit—htable—expire msec
After hov mary milliseconds do hash entries expire.

——hashlimit—htable—gcinterval msec
How mary milliseconds between garbage collection intervals.

helper
This module matches packets related to a specific conntrack-helper.
['] ——helper string
Matches packets related to the specified conntrack-helper.

string can be "ftp" for packets related to a ftp-session on default portother ports append
—portnr to the value, ie. "ftp—2121".

Same rules apply for other conntrack-helpers.
icmp
This extension can be used if ‘——protocol icmp’ is specified. It provides the following option:

[1] ——icmp-type {typd/codg|typenamg
This allows specification of the ICMP type, which can be a numeric ICMP type, type/cqd® pair
one of the ICMP type names shown by the command
iptables —p icmp —h

iptables 1.4.10 10

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

iprange
This matches on agn abitrary range of IP addresses.

['] ——src—-rangefrom[-to]
Match source IP in the specified range.

['] ——dst-rangefrom[-tO]
Match destination IP in the specified range.
ipvs
Match IPVS connection properties.

[T ——ipvs
packet belongs to an IPVS connection

Any of the following options implies ——ipvs \{en negded)

['] ——vproto protocol
VIP protocol to match; by number or name, e.g. "tcp”

['] ——vaddr addres§fmask
VIP address to match

['] ——vport port
VIP port to match; by number or name, e.g. "http"

——vdir {ORIGINAL |REPLY}
flow direction of packet

['] ——vmethod{ GATE|IPIP [MASQ}
IPVS forwarding method used

['] ——vportctl port
VIP port of the controlling connection to match, e.g. 21 for FTP

length
This module matches the length of the layer-3 payload (e.g. layer-4 packet) ofet qaikst a specific
value or range of values.

['] ——lengthlengtH:length
limit
This module matches at a limited rate using a tokesket filter. A rule using this extension will match

until this limit is reached (unless the ‘! flag is used). It can be used in combination witb@eamget to
give limited logging, for example.

——limit rate[/second/minute|/hour|/day]
Maximum aerage matching rate: specified as a numhbéh an optional ‘/second’, ‘/minute’,
‘lhour’, or ‘/day’ suffix; the default is 3/hour.

—=limit—burst number
Maximum initial number of packets to match: this number gets rgetidry one \ery time the
limit specified abwe is not reached, up to this number; the default is 5.

mac
['] ——mac-sourceaddress
Match source M& address. Imust be of the form XX:XX:XX:XX:XX:XX. Note that this only
makes sense for packets coming from an Ethernet device and enterPiEROUTING, FOR-
WARD or INPUT chains.

mark
This module matches the netfilter mark field associated with a packet (which can be set udiaBkhe
target below).

iptables 1.4.10 11

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

['] ——mark valug/mask
Matches packets with thevgh unsigned mark value (if anaskis specified, this is logically
ANDed with themaskbefore the comparison).

multiport
This module matches a set of source or destination popsto 15 ports can be specified. port range
(port:port) counts as twports. Itcan only be used in conjunction witip tcp or —p udp.

['] ——source—ports——sports port] ,port|,port:port]...
Match if the source port is one of thevgi ports. Theflag ——sportsis a cowenient alias for this
option. Multiple ports or port ranges are separated using a comma, and a port range is specified
using a colon.53,1024:6553%vould therefore match ports 53 and all from 1024 through 65535.

[!] ——destination—ports——dports port[,port|,port: port]...
Match if the destination port is one of theaj ports. Theflag ——dports is a conenient alias for
this option.

['] ——ports port[,port|,port:port]...
Match if either the source or destination ports are equal to one of/dmepgits.

osf
The osf module does passigerating system fingerprinting. This modules compares some datelofw
Size, MSS, options and their ord&f L, DF, and others) from packets with the SYN bit set.
['] ——genrestring
Match an operating system genre by using a yasisigerprinting.
——ttl level
Do additional TTL checks on the patko determine the operating systelevel can be one of
the following values:
e 0-True IP address and fingerprint TTL comparison. This generally works for LANS.
e 1 - Check if the IP heades’ TTL is less than the fingerprint one.ows for globally-routable
addresses.
e 2-Do ot compare the TTL at all.
——log level
Log determined genres into dmesgreif they do not match the desired onéevelcan be one of the
following values:
¢ 0-Log all matched or unknown signatures
* 1-Log only the first one
e 2-Log all known matched signatures
You may find something li& this in syslog:
Windows [2000:SP3:Widows XP Pro SP1, 2000 SP3]: 11.22.33.55:4024 -> 11.22.33.44:139 hops=3
Linux [2.5-2.6] : 1.2.3.4:42624 -> 1.2.3.5:22 hops=4
OS fingerprints are loadable using tifal_osf program. © load fingerprints from a file, use:
nfnl_osf -f /usr/share/xtables/pf.os
To remove them again,
nfnl_osf -f /usr/share/xtables/pf.os -d
The fingerprint database can be downlaoded from http://www.openbsd.org/cgi-bin/cvsweb/src/etc/pf.os .
owner

This module attempts to matchnous characteristics of the packet credimr locally generated paets.
This match is only valid in the OUTPUT and POSTROUTING chainsw&rded packets do notvealy
socket associated with them. Packets from kernel threadvd@lscket, but usually no owner.

iptables 1.4.10 12

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

['] ——uid—owner username

[!] ——uid—owner userid—-userid
Matches if the packet soeks file structure (if it has one) is owned by theegi user You may
also specify a numerical UID, or an UID range.

['] ——gid—owner groupname

['] ——gid—owner groupid—groupid
Matches if the packet soeks file structure is owned by thevgnh group. You may also specify a
numerical GID, or a GID range.

[!] ——socket-exists
Matches if the packet is associated with a socket.

physdev
This module matches on the bridge port input and outpuitekeensleed to a bridge device. This module
is a part of the infrastructure that enables a transparent bridgingwBlIfaad is only useful for kerneler-
sions abwe vasion 2.5.44.

['] ——physdev-inname
Name of a bridge port via which a patks receied (only for packets entering thRIPUT, FOR-
WARD andPREROUTING chains). If the interface name ends in a "+", theniaterface which
begins with this name will match. If the packet dida‘rive through a bridge device, this patk
won'’t match this option, unless " is used.

['] ——physdev-outname
Name of a bridge port via which a packet is going to be sent (forefsaektering thé&OR-
WARD, OUTPUT andPOSTROUTING chains). Ifthe interface name ends in a "+", thely an
interface which bgins with this name will match. Note that in that and mangle OUTPUT
chains one cannot match on the bridge output pontgb® one can in thdilter OUTPUT chain.
If the packet wn't leave by a kridge deice or if it is yet unknown what the output device will be,
then the packet wohmatch this option, unless '!" is used.

['] ——physdev—is—in
Matches if the packet has entered through a bridge interface.

['] ——physdev-is—out
Matches if the packet will lea through a bridge interface.

['] ——physdev-is—bridged
Matches if the paak is being bridged and therefore is not being routed. This is only useful in the
FORWARD and POSTROUTING chains.

pkttype
This module matches the link-layer packet type.

[11 ——pkt-type {unicastbroadcasimulticast}

policy

This modules matches the pglissed by IPsec for handling a packet.

——dir {inlout}
Used to select whether to match the polised for decapsulation or the pglithat will be used
for encapsulation.in is valid in the PREROUTING, INPUT and FORWARD chains,out is
valid in thePOSTROUTING, OUTPUT and FORWARD chains.

——pol {nondipseqd
Matches if the packet is subject to IPsec processing.

——strict
Selects whether to match the exact potic match if ary rule of the polig matches the gen pol-
icy.

iptables 1.4.10 13

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

['] ——reqid id
Matches the reqid of the pajicule. The reqid can be specified withtkey(8)usingunique:id as
level.

['] ——spi spi

Matches the SPI of the SA.

['] ——proto {ahlespipcomp}
Matches the encapsulation protocol.

['] =—mode{tunnelftransport}
Matches the encapsulation mode.

['] ——tunnel-src addi{/mask
Matches the source end-point address of a tunnel mode SA. Only valig-withde tunnel

['1 ——tunnel-dstaddr{/mask
Matches the destination end-point address of a tunnel mode SA. Only valiehmitide tunnel

——next Start the next element in the pgligpecification. Can only be used witkrstrict.

quota
Implements network quotas by decrementing a byte counter with each packet.

['] ——quota bytes
The quota in bytes.

rateest
The rate estimator can match on estimated rates as collected byTR& RRAtarget. It supports matching
on absolute bps/pps values, comparing tate estimators and matching on the difference betwezratey
estimators.

—-rateestlname
Name of the first rate estimator.

——rateest2name
Name of the second rate estimator (if difference is to be calculated).

——rateest-delta
Compare difference(s) towvgn rate(s)

——rateest-bpsilvalue

——rateest-bps2value
Compare bytes per second.

——rateest—ppsilvalue

——rateest—pps2value
Compare packets per second.

[1] ——rateest-It
Match if rate is less than\gin rate/estimator.

[!] ——rateest—gt
Match if rate is greater thanvgn rate/estimator.

[!] ——rateest-eq
Match if rate is equal to gén rate/estimator.

Example: This is what can be used to route outgoing data connections from an FTPveetves tines
based on thevailable bandwidth at the time the data connection was started:

Estimate outgoing rates

iptables -t mangle —A POSTROUTING -0 ethO —j RATEEST —-rateest—-name ethO —-rateesttinterv
250ms —-rateest—ewma 0.5s

iptables 1.4.10 14

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

iptables -t mangle —A POSTRUTING -0 ppp0 —j RATEEST --rateest-name ppp0 —-rateest—alterv
250ms —-rateest—-ewma 0.5s

Mark based onvailable bandwidth

iptables -t mangle —A balance -m conntrack —-ctstate NEW -m helper ——helper ftp —m rateest
—-rateest—-delta —-rateestl ethO —-rateest-bpsl 2.5mbit —-rateest—gt ——rateest2 ppp0O —-rateest-bps2
2mbit - CONNMARK ——set-mark 1

iptables -t mangle —A balance —-m conntrack —-ctstate NEW -m helper ——helper ftp —m rateest
——rateest—-delta —-rateestl ppp0 —-rateest-bpsl 2mbit —-rateest—-gt —-rateest2 ethO --rateest-bps2
2.5mbit -j CONNMARK --set-mark 2

iptables -t mangle —A balance -] CONNMARK —--restore—-mark

realm
This matches the routing realm. Routing realms are used in comqaléng setups wolving dynamic
routing protocols like BGP.

['] ——realm valud/mask
Matches a gien realm number (and optionally mask). If not a numbatue can be a named
realm from /etc/iproute2/rt_realms (mask can not be used in that case).

recent
Allows you to dynamically create a list of IP addresses and then maiicistattpat list in a f& different
ways.
For example, you can create a "badguy" list out of people attempting to connect to port 139 onwallir fire
and then DROP all future packets from them without considering them.

——set ——rcheck, ——update and—-remove are mutually excluse.

—-namename
Specify the list to use for the commands. If no namevienghenDEFAULT will be used.

[1] ——set
This will add the source address of the gk the list. If the source address is already in the list,
this will update the existing entryhis will always return success (or failurelifs passed in).

—-rsource
Match/sae the source address of each packet in the recent list table. This is the default.

——rdest
Match/sae te destination address of each packet in the recent list table.

['] ——rcheck
Check if the source address of the packet is currently in the list.

['] ——update
Like ——rcheck, except it will update the "last seen" timestamp if it matches.

['] ——remove
Check if the source address of the packet is currently in the list and if so that address will be
removed from the list and the rule will return true. If the address is not found, false is returned.

——secondsseconds
This option must be used in conjunction with one-efcheck or ——update. When used, this will
narrav the match to only happen when the address is in the list and was seen within tlverast gi
number of seconds.

——hitcount hits
This option must be used in conjunction with one-efcheck or ——update. When used, this will
narrav the match to only happen when the address is in the list andtpdekd been reced
greater than or equal to thesgi value. This option may be used along withsecondgto create
an e&en narrover match requiring a certain number of hits within a specific time frame. The

iptables 1.4.10 15

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

maximum value for the hitcount parameter isegiby the "ip_pkt_list_tot" parameter of the
xt_recent kernel module. Exceeding thslue on the command line will cause the rule to be
rejected.

——rttl This option may only be used in conjunction with one-efcheck or ——update. When used, this
will narrow the match to only happen when the address is in the list and the TTL of the current
paclet matches that of the packet which hit thesetrule. This may be useful if you Y& pob-
lems with peopledking their source address in order to DoS you via this module by diselo
others access to your site by sending bogus packets to you.

Examples:

iptables —A FORVARD —-m recent ——name badguy —-rcheck ——seconds 60 -j DROP

iptables —A FORVARD —p tcp —i ethO ——dport 139 —-m recent ——name badguy ——set —j DROP
Steve's ipt_recent website (http://snowman.net/projects/ipt_recent/) also has some examples of usage.
/proc/net/xt_recent/* are the current lists of addresses and information about each entry of each list.

Each file in/proc/net/xt_recent/can be read from to see the current list or writtem uging the follaving
commands to modify the list:

echo +4addr>/proc/net/xt_recent/DEFAULT
to addaddrto the DERULT list

echo -addr>/proc/net/xt_recent/DEFAULT
to remwe addr from the DERULT list

echo / >/proc/net/xt_recent/DERULT
to flush the DERULT list (remave dl entries).

The module itself accepts parameters, defaults shown:

ip_list_tot=100
Number of addresses remembered per table.

ip_pkt_list_tot=20
Number of packets per address remembered.

ip_list_hash_size0
Hash table size. 0 means to calculate it based on ip_list_tot, default: 512.

ip_list_perms=0644
Permissions for /proc/net/xt_recent/* files.

ip_list_uid=0
Numerical UID for ownership of /proc/net/xt_recent/* files.

ip_list_gid=0
Numerical GID for ownership of /proc/net/xt_recent/* files.

sctp
[!] ——source—port——sport port[:porf]

[!] ——destination—port,——dport port[:port]

['] =—chunk-types{all[anylonly} chunktypé¢:flagq [...]
The flag letter in upper case indicates that the flag is to match if set, in the lower case indicates to
match if unset.

Chunk types: BTA INIT INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK ABORT SHUT-
DOWN SHUTDONN_ACK ERROR COOKIE_ECHO COOKIE_ACK ECN_ECNE ECN_CWR
SHUTDOWN_COMPLETE ASCONF ASCONF_ACK FO@®ARD_TSN

chunk type awailable flags

iptables 1.4.10 16

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

set

DATA IUBEiube
ABORT Tt
SHUTDOWN_COMPLETE Tt

(lowercase means flag should be "off", uppercase means "on")

Examples:
iptables —A INPUT —p sctp ——dport 80 —j DROP
iptables —A INPUT —p sctp ——chunk-typesydDATA,INIT —j DROP

iptables —A INPUT —p sctp ——chunk-typesydDATA:Be —j ACCEPT

This module matches IP sets which can be defined by ipset(8).

['] ——match-setsetname fldgflag]...
where flags are the comma separated listofnd/ordst specifications and there can be no more
than six of them. Hence the command

iptables —A FORVARD —-m set ——match-set test src,dst

will match paclets, for which (if the set type is ipportmap) the source address and destination port
pair can be found in the specified set. If the set type of the specified set is single dimension (for
example ipmap), then the command will match packets for which the source address can be found
in the specified set.

The option——match-setcan be replaced by-setif that does not clash with an option of other extensions.

Use of -m set requires that ipset kernel support is provided. As standard kernels do not ship this currently
the ipset or Xtables-addons package needs to be installed.

socket

This matches if an open socket can be found by doing a socket lookup on the packet.

state

This module, when combined with connection trackingwallaccess to the connection tracking state for
this packet.

[1] ——statestate
Where state is a comma separated list of the connection states to match. Possible states are
INVALID meaning that the packet could not be identified for some reason which includes running
out of memory and ICMP errors which dbrorrespond to anknown connection ESTAB-
LISHED meaning that the packet is associated with a connection which has seen packets in both
directions,NEW meaning that the packet has started \a cennection, or otherwise associated
with a connection which has not seen packets in both direction®EIWATED meaning that the
paclet is starting a e connection, but is associated with an existing connection, such as an FTP
data transferor an ICMP error UNTRACKED meaning that the packet is not tracked at all,
which happens if you use the NOTRACK target iw table.

statistic

This module matches pastis based on some statistic condition. It supportsdatinct modes settable
with the——modeoption.

Supported options:

——modemode
Set the matching mode of the matching rule, supported modesndi@an andnth.

——probability p
Set the probability from 0 to 1 for a packet to be randomly matched. It works only withnthe

dom mode.

iptables 1.4.10 17

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

——every n
Match one packetvery nth packet. It wrks only with thenth mode (see also the-packet
option).
——packetp
Set the initial counter value (0 <= p <= n-1, default 0) fomthhemode.
string
This modules matches avgn sring by using some pattern matching stggtédt requires a linux kernel >=
2.6.14.

——algo{bm|kmp}
Select the pattern matching strateiyn = Boyer-Moore, kmp = Knuth-Pratt-Morris)

——from offset
Set the offset from which it starts looking foryanatching. If not passed, default is 0.

——to offset
Set the dbet up to which should be scanned. That is, bfftetl (counting from 0) is the last one
that is scanned. If not passed, default is the packet size.

[!] ——string pattern
Matches the gen pattern.

['] ——hex-string pattern
Matches the gien pattern in h& notation.

tcp
These extensions can be used if ‘——protocol tcp’ is specified. It provides the following options:

[!] ——source—port——sport port[:port]
Source port or port range specification. This can either be a service name or a port Anmber
inclusive range can also be specified, using the forfimsttlast If the first port is omitted, "0" is
assumed; if the last is omitted, "65535" is assunitthe first port is greater than the second one
they will be swapped. Thdlag ——sportis a corenient alias for this option.

[!] ——destination—port,——dport port[: port]
Destination port or port range specification. The flagport is a comenient alias for this option.

['] ——tcp—flagsmask comp
Match when the TCP flags are as specified. The figsinaentmaskis the flags which we should
examine, written as a comma-separated list, and the secgmeh@mtcompis a comma-separated
list of flags which must be set. Flags @8N ACK FIN RST URG PSH ALL NONE. Hence
the command
iptables —A FORVARD —p tcp ——tcp—flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN and RST flags unset.

[=—syn
Only match TCP packets with the SYN bit set and ti@K/ARST and FIN bits clearedSuch
paclets are used to request TCP connection initiation;¥amele, blocking such packets coming
in an interface will preent incoming TCP connectionspboutgoing TCP connections will be
unafected. Itis equiaent to——tcp—flags SYN,RSTACK,FIN SYN. If the "!I" flag precedes the
"——syn", the sense of the option ivénted.

['] ——tcp—option number
Match if TCP option set.
tcpmss
This matches the TCP MSS (maximum segment size) field of the TCP .h&adecan only use this on

TCP SYN or SYN/ACK packets, since the MSS is only negotiated during the TCP hamdslmainection
startup time.

iptables 1.4.10 18

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

time

tos

['] ——mssvaluq:valug
Match a gien TCP MSS value or range.

This matches if the packet asi time/date is within a gen range. All options are optionalybare ANDed
when specified.

——datestart YYYY-MM[-DD[Thh[:mn{:sd]]]]
——datestopYYYY-MM[-DD[Thh[:mn{:sq]]1]

Only match during the gén time, which must be in ISO 8601 "T" notation. The possible time
range is 1970-01-01T00:00:00 to 2038-01-19T04:17:07.

If ——datestart or ——datestop are not specified, it will default to 1970-01-01 and 2038-01-19,
respectiely.

——timestart hh:mn{:sq
——timestophh:mn{:sq

Only match during the gén daytime. The possible time range is 00:00:00 to 23:59:59. Leading
zeroes are allowed (e.g. "06:03") and correctly interpreted as base-10.

['] ——monthdaysday{,day...]

Only match on the gen days of the month. Possible values &n® 31. Note that specifyin@1
will of course not match on months which do notéha 3 st day; the same goes for 28- or 29-day
February.

['] ——weekdaysday[,day...]

Only match on the gen weekdays. Possible values &flen, Tue, Wed, Thu, Fri, Sat, Sun, or
values fromlto 7, respectiely. You may also use two-character variaie (Tu, etc.).

——utc
Interpret the times gen for ——datestart, ——datestop ——timestart and—-timestopto be UTC.
——localtz

Interpret the times gen for ——datestart, ——datestop ——timestart and ——timestop to be local
kernel time. (Default)

EXAMPLES. To match on weekends, use:
—-m time ——weekdays Sa,Su
Or, to match (once) on a national holiday block:
—m time ——datestart 2007-12-24 ——datestop 2007-12-27

Since the stop time is actually inchasiyou would need the following stop time to not match the first sec-
ond of the n& day:

—m time ——datestart 2007-01-01T17:00 ——datestop 2007-01-01T23:59:59
During lunch hour:

—m time ——timestart 12:30 ——timestop 13:30
The fourth Friday in the month:

—m time ——weekdays Fr ——monthdays 22,23,24,25,26,27,28

(Note that this exploits a certain mathematical propérty not possible to say "fourth Thursday OR fourth
Friday" in one rule. It is possible with multiple rules, though.)

This module matches the 8-biyge of Service field in the IPv4 header (i.e. including the "Precedence"
bits) or the (also 8-bit) Priority field in the IPv6 header.

iptables 1.4.10 19

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

ttl

u32

['] ——tosvalugd/mask
Matches packets with thevgh TOS mark value. If a mask is specified, it is logically ANDed with
the TOS mark before the comparison.

['] ——tossymbol
You can specify a symbolic name when using the tos match for IPv4. The list of recogfi@ed T
names can be obtained by calling iptables withtos —h Note that this implies a mask of 0x3F
i.e. all but the ECN bits.

This module matches the time tedifield in the IP header.

——ttl-eq ttl
Matches the gien TTL value.

——ttl—gt ttl
Matches if TTL is greater than thevgn TTL value.

—=ttl-It ttl
Matches if TTL is less than thevgnh TTL value.

U32 tests whether quantities of up to 4 bytes extracted from &tpaake Pecified values. The specifica-
tion of what to extract is general enough to find datavehgiff sets from tcp headers or payloads.

[1] ——u32tests
The argument amounts to a program in a small language described belo

tests := location "=" value | tests "&&" location "=" value
value :=range | value "," range
range := number | number ":" number
a sngle numbern, is interpreted the same a31. n:mis interpreted as the range of numbers and<=m.
location := number | location operator number
operator :="&" | "<<" | ">>" | "@"

The operatorg , <<, >> and&& mean the same as in The=is really a set membership operator and
the value syntax describes a set. @®eperator is what allows moving to thexhdeader and is described
further belav.

There are currently some artificial implementation limits on the size of the tests:
* no more than 10 of2" (and 9 && "s) in the u32 argument
* no more than 10 ranges (and 9 commas) per value
* no more than 10 numbers (and 9 operators) per location

To describe the meaning of location, imagine the feilg machine that interprets it. There are thregsre
ters:

A'is of typechar *, initially the address of the IP header
B and C are unsigned 32 bit integers, initially zero
The instructions are:
number B = number;
C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)
&number C = C & number
<< number C = C << number
>> number C = C >> number

iptables 1.4.10 20

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

@number A = A + C; then do the instruction number

Any access of memory outside [skb—>data,skb—>end] causes the matih ©Otherwisethe result of the
computation is the final value of C.

Whitespace is allowed but not required in the testsveder, the characters that do occur there arelyilto
require shell quoting, so it is a good idea to enclose the arguments in quotes.

Example:

match IP packets with total length >= 256

The IP header contains a total length field in bytes 2-3.

—-u32 '0 & OXxFFFF = 0x100:0xFFFF

read bytes 0-3

AND that with OxFFFF (giving bytes 2-3), and test whether that is in the range [0x100:0xFFFF]
Example: (more realistic, hence more complicated)

match ICMP packets with icmp type O

First test that it is an ICMP packet, truehjte 9 (protocol) = 1

--u32'6 & OXFF =1 && ...

read bytes 6-9, use to thrav away bytes 6-8 and compare the result to 1xtNest that it is not a
fragment. (If so, it might be part of such a petdbut we cannot aiys tell.) N.B.: This test is gen-
erally needed if you want to match anything beyond the IP heBuetast 6 bits of byte 6 and all
of byte 7 are 0 ffthis is a complete paek(not a fragment). Alternatily, you can allov first frag-
ments by only testing the last 5 bits of byte 6.

..4 & O0X3FFF =0 && ...

Last test: the first byte past the IP header (the type) is 0. This is whergeue tee the @syntax.
The length of the IP header (IHL) in 32 bibsds is stored in the right half of byte 0 of the IP
header itself.

..0>>22&0x3C@0>>24=0

The first 0 means read bytes 05322 means shift that 22 bits to the right. Shifting 24 bitaiid

give the first byte, so only 22 bits is four times that plusvarf®re bits.&3C then eliminates the

two extra bits on the right and the first four bits of the first byte.iRstance, if IHL=5, then the IP
header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in binary) xxxx0101 yyzz#2z,

gives the 10 bit value xxxx0101yy ar&3C gives 0010100.@ means to use this number as wne
offset into the packet, and read four bytes starting from there. This is the first 4 bytes of the ICMP
payload, of which byte 0 is the ICMP type. Therefore, we simply shiftahe\24 to the right to

throw out all but the first byte and compare the result with 0.

Example:
TCP payload bytes 8-12 isyanf 1, 2, 50r 8
First we test that the packet is a tcp packet (similar to ICMP).
--u32'6 & OXFF =6 && ...
Next, test that it is not a fragment (same awvebo
..0>>22&0x3C @ 12>>26 & 0x3C @ 8=1,2,5,8

0>>22&3C as abwe computes the number of bytes in the IP hea@emales this the ne offset
into the packet, which is the start of the TCP healder length of the TCP header (again in 32 bit
words) is the left half of byte 12 of the TCP headdre 12>>26&3C computes this length in
bytes (similar to the IP header before). "@" emlkhis the ne offset, which is the start of the
TCP payload. Finally8 reads bytes 8-12 of the payload andhecks whether the result isyaof
1,2,50r8.

iptables 1.4.10 21

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

udp
These extensions can be used if ‘——protocol udp’ is specified. It provides the following options:

[!] ——source—port——sport port[:port]
Source port or port range specification. See the description ef-$murce—port option of the
TCP extension for details.

['] ——destination—port,——dport port[:port]
Destination port or port range specificatid®ee the description of the-destination—port option
of the TCP extension for details.

unclean
This module takes no options, but attempts to matchepaalhich seem malformed or unusual. This is
regarded as experimental.

TARGET EXTENSIONS
iptables can use extended target modules: the following are included in the standard distribution.

CHECKSUM

This target allows to seleedly work around broken/old applications. It can only be used in the mangle ta-
ble.

——checksum-fill
Compute and fill in the checksum in a petcthat lacks a checksum. This is particularly useful, if
you need to work around old applications such as dhcp clients, that domkotvell with check-
sum offloads, but dohivant to disable checksum offload in your device.

CLASSIFY
This module allovs you to set the skb—>priority value (and thus classify the packet into a specific CBQ
class).
——set—classnajor.minor
Set the major and minor class value. The values ayslinterpreted as hexadecimake if no
Ox prefix is gven.
CLUSTERIP
This module allows you to configure a simple cluster of nodes that share a certain IP @ratidviéss

without an explicit load balancer in front of them. Connections are statically distributed between the nodes
in this cluster.

——new Create a ng ClusterIP You alvays have 1o st this on the first rule for agn ClusterlP.

——hashmodemode
Specify the hashing modd-as to be one afourceip, sourceip—sourceport sourceip—source-
port—destport.

——clustermacmac
Specify the ClusterlP M& address. Has to be a link-layer multicast address

——total-nodesnum
Number of total nodes within this cluster.

——local-nodenum
Local node number within this cluster.

——hash-init rnd
Specify the random seed used for hash initialization.

CONNMARK
This module sets the netfilter mark value associated with a connection. The mark is 32 bits wide.

——set-xmark valug/mask
Zero out the bits gen by maskand XORvalueinto the ctmark.

iptables 1.4.10 22

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

——save-mark [-—nfmask nfmask[-—-ctmaskctmask
Copy the packet mark (nfmark) to the connection mark (ctmark) using viee giasks. The ne
nfmark value is determined as follows:

ctmark = (ctmark & “ctmask) ~ (nfmark & nfmask)

i.e. ctmaskdefines what bits to clear anfimaskwhat bits of the nfmark to XOR into the ctmark.
ctmaskandnfmaskdefault to OXFFFFFFFF.

——restore—mark [-—nfmask nfmask[——ctmask ctmask
Copy the connection mark (ctmark) to the packet mark (nfmark) using tiee giasks. The ng
ctmark value is determined as follows:

nfmark = (nfmark & hfmask ™ (ctmark & ctmaslk;

i.e. nfmaskdefines what bits to clear astmaskwhat bits of the ctmark to XOR into the nfmark.
ctmaskandnfmaskdefault to OxXFFFFFFFF.

—-restore—mark is only valid in themangletable.
The following mnemonics arevailable for——set—xmark:

——and-mark bits
Binary AND the ctmark withbits. (Mnemonic for——set—xmark Oinvbits whereinvbits is the
binary neggetion of bits.)

——or—-mark bits
Binary OR the ctmark witbits. (Mnemonic for--set—xmark bits/bits.)

——xor—mark bits
Binary XOR the ctmark witlits. (Mnemonic for-—set—xmark bits/0.)

——set—-mark valug/mask
Set the connection mark. If a mask is specified then only those bits set in the mask are modified.

——save-mark [-—maskmask
Copy the nfmark to the ctmark. If a mask is specified, only those bits are copied.

——restore-mark [-—mask mask
Copy the ctmark to the nfmark. If a mask is specified, only those bits are copied. This ial@hly v
in themangletable.

CONNSECMARK
This module copies security markings from petskto connections (if unlabeled), and from connections
back to packets (also only if unlabeledypically used in conjunction with SECMARK, it is onlahd in
themangletable.

——save If the packet has a security marking, g@o the connection if the connection is not marked.

—-restore
If the packet does not e a curity marking, and the connection does,ycitye security marking
from the connection to the packet.

CT
The CT target allows to set parameters for a packet or its associated connectiorgeltattahes a "tem-
plate" connection tracking entry to the packet, which is then used by the conntrack core when initializing a
new ct entry. This target is thus only valid in the "raw" table.

——notrack
Disables connection tracking for this packet.

——helper name
Use the helper identified lhyamefor the connection. This is more flexible than loading the con-
ntrack helper modules with preset ports.

iptables 1.4.10 23

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

——ctevents event,...]
Only generate the specified conntragkengs for this connection. Possibleeat types arenew,
related, destroy, reply, assured protoinfo, helper, mark (this refers to the ctmark, not nfmark),
natseqinfo, secmark (ctsecmark).

——expevents event,...]
Only generate the specified expectativenés for this connection. Possibleeat types arenew.

——zoneid

Assign this packet to zorid and only hge lookups done in that zondy default, packets ke
zone 0.

DNAT
This target is only valid in theat table, in thePREROUTING and OUTPUT chains, and usetefined
chains which are only called from those chaiftsspecifies that the destination address of the giack
should be modified (and all future packets in this connection will also be mangled), and rules should cease
being kamined. Ittakes one type of option:

——to—destination[ipaddr][—ipaddr][: port{—port]]
which can specify a single wedestination IP address, an inckssirange of IP addresses, and
optionally a port range (which is only valid if the rule also specifigstcp or —p udp). If no port
range is specified, then the destination port willende nodified. If no IP address is specified
then only the destination port will be modified.

In Kernels up to 2.6.10 you can add/esal ——to—destination options. For those kernels, if you
specify more than one destination address, either via an address range or multiple ——to-destina-
tion options, a simple round-robin (one after another in cycle) load balancing takes place between
these addresses. Later Kernels (>= 2.6.11-rcl)tdavethe ability to MT to multiple ranges
anymore.

——random
If option ——random is used then port mapping will be randomized (kernel >= 2.6.22).

——persistent
Gives a dient the same source-/destination-address for each connection. This supersedes the
SAME target. Support for persistent mappingsvalable from 2.6.29-rc2.

DSCP
This target allows to alter the value of the DSCP bits within the TOS header of the IPet pasthis
manipulates a packet, it can only be used in the mangle table.

——set-dscpvalue
Set the DSCP field to a numerical value (can be decimal or hex)

——set-dscp—classlass
Set the DSCP field to a DiffServ class.

ECN

This target allows to seleeély work around known ECN blackhole# can only be used in the mangle ta-
ble.

—-—ecn-tcp-remoe

Remore dl ECN bits from the TCP heade©f course, it can only be used in conjunction with

tep.

IDLETIMER

This target can be used to identify when interface® twen idle for a certain period of tim@imers are
identified by labels and are created when a rule is set wittv dabel. Therules also tai a imeout \alue
(in seconds) as an option. If more than one rule uses the same timer label, the timer will be restarted when-
evea any o the rules get a hitOne entry for each timer is created in sysfs. This attribute contains the timer
remaining for the timer toxire. Theattributes are located under the xt_idletimer class:

iptables 1.4.10 24

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

/sys/class/xt_idletimer/timers/<label>

When the timer expires, the target module sends a sysfs notification to the userspace, which can then decide
what to do (eg. disconnect tovegower).

——timeout amount
This is the time in seconds that will trigger the notification.

——label string
This is a unique identifier for the timeFhe maximum length for the label string is 27 characters.

LOG
Turn on kernel logging of matching patk. Wherthis option is set for a rule, the Linux kernel will print
some information on all matching packets €likost IP header fields) via the kernel log (where it can be
read withdmesgor syslogd8)). Thisis a "non-terminating target", i.e. rulevessal continues at the xie
rule. Saif you want to LOG the paaits you refuse, use twgeparate rules with the same matching criteria,
first using target LOG then DROP (or REJECT).

——log-level level
Level of logging (numeric or segysla.con{5)).

——log—prefix prefix
Prefix log messages with the specified prefix; up to 29 letters long, and useful for distinguishing
messages in the logs.

——log—-tcp—-sequence
Log TCP sequence numbers. This is a security risk if the log is readable by users.

——log-tcp—options
Log options from the TCP packet header.
——log-ip—options
Log options from the IP packet header.
——log-uid
Log the userid of the process which generated the packet.
MARK
This target is used to set the Netfilter mark value associated with thet.pftaan, for example, be used in
conjunction with routing based on fwmark (needs iproute2). If you plan on doing so, note that the mark

needs to be set in the PREROUTING chain of the mangle table to affect routing. The mark field is 32 bits
wide.

——set—xmark valug/mask
Zeroes out the bits gn by maskand XORsvalueinto the packet mark (“nfmark"). Haskis
omitted, OXFFFFFFFF is assumed.

——set—mark valug/mask
Zeroes out the bhits ¥gn by maskand ORsvalue into the packet mark. Ifnaskis omitted,
OXFFFFFFFF is assumed.

The following mnemonics arevalable:

——and-mark bits
Binary AND the nfmark withbits. (Mnemonic for——set—xmark Oinvbits whereinvbits is the
binary negation of bits.)

——or—mark bits
Binary OR the nfmark witlits. (Mnemonic for-—set—xmark bits/bits.)

——xor—-mark bits
Binary XOR the nfmark witlpits. (Mnemonic for-—set—xmark bits/0.)

iptables 1.4.10 25

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

MASQUERADE
This target is only valid in theat table, in thePOSTROUTING chain. Itshould only be used with
dynamically assigned IP (dialup) connections: if youeha $atic IP address, you should use theASNar-
get. Masqueradings equvalent to specifying a mapping to the IP address of the interface thetpack
going out, but also has the effect that connections@gmttenwhen the interface goeswn. Thisis the
correct behavior when the next dialup is unlikely taehthe same interface address (and hengeestab-
lished connections are lost argyy. Ittakes one option:

——to—ports port[—port]
This specifies a range of source ports to userriding the defult SNAT source port-selection
heuristics (see alvg). Thisis only valid if the rule also specifiep tcp or —p udp.

——random
Randomize source port mapping If optisarandom is used then port mapping will be random-
ized (kernel >= 2.6.21).

MIRROR
This is an experimental demonstration target whigbrta the source and destination fields in the IP header
and retransmits the pastk Itis only valid in thelNPUT, FORWARD and PREROUTING chains, and
userdefined chains which are only called from those chains. Note that the outgoing packi aeen
by ary packet filtering chains, connection tracking @XM\to avoid loops and other problems.

NETMAP
This target allars you to statically map a whole network of addresses onto another network of addtesses.
can only be used from rules in that table.

——to addres§/mask
Network address to map to. The resulting address will be constructed in the following way: All
‘one’ bits in the mask are filled in from thewéaddress’. Allbits that are zero in the mask are
filled in from the original address.

NFLOG
This target provides logging of matching packets. When thietas set for a rule, the Linux kernel will
pass the packet to the loaded logging kadkto log the packet. This is usually used in combination with
nfnetlink_log as logging baekd, which will multicast the packet througmetlink soclet to the specified
multicast group. One or more userspace processes may subscribe to the groupetdheepackets. Lik
LOG, this is a non-terminating target, i.e. rulevéraal continues at the next rule.

——nflog—group nigroup
The netlink group (1 — 2°32-1) to which packets are (only applicable for nfnetlink_log). The
default value is 0.

——nflog—prefix prefix
A prefix string to include in the log message, up to 64 characters long, useful for distinguishing
messages in the logs.

——-nflog-rangesize
The number of bytes to be copied to userspace (only applicable for nfnetlink_log). nfnetlink_log
instances may specify their own range, this opticarales it.

——nflog—thresholdsize
Number of packts to queue inside the kernel before sending them to userspace (only applicable
for nfnetlink_log). Higher alues result in lessverhead per packet, but increase delay until the
packets reach userspace. The default value is 1.

NFQUEUE
This target is an extension of the QUEUE target. As opposed to QUEUE, it allows you to put a packet into
ary specific queue, identified by its 16-bit queue numbercan only be used with Kernel versions 2.6.14
or later since it requires thenfnetlink_queue kernel support. Theueue-balanceoption was added in
Linux 2.6.31.

iptables 1.4.10 26

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

——queue-numvalue
This specifies the QUEUE number to use. Valid queue numbers are 0 to 65535.alittevalef
is 0.

——queue-balancevaluevalue
This specifies a range of queues to useléls are then balanced across tiverggueues. Thiss
useful for multicore systems: start multiple instances of the userspace program on queues X, X+1, ..
x+n and use "-—queue-balance&+n”. Packets belonging to the same connection are put into the
same nfqueue.

NOTRACK
This target disables connection tracking for all packets matching that rule.

It can only be used in thaw table.

RATEEST
The RATEEST taget collects statistics, performs rate estimation calculation amed tee results for later
evduation using theateestmatch.

——rateest-namename
Count matched packets into the pool referred todye which is freely choosable.

——rateest-interval amoun{f simsjus}
Rate measurement interval, in seconds, milliseconds or microseconds.

——rateest-ewmalogvalue
Rate measurementaaging time constant.

REDIRECT
This target is only valid in theat table, in thePREROUTING and OUTPUT chains, and usetefined
chains which are only called from those chains. It redirects the packet to the machine itself by changing the
destination IP to the primary address of the incoming interface (locally-generatetspaekmapped to the
127.0.0.1 address).

——to—ports port[—porf]
This specifies a destination port or range of ports to use: without this, the destination part is ne
altered. Thiss only valid if the rule also specifiep tcp or —p udp.

——random
If option ——random is used then port mapping will be randomized (kernel >= 2.6.22).

REJECT
This is used to send back an error packet in response to the matched packet: otherwisevateistequi
DROP so it is a terminating ARGET, ending rule traersal. Thistarget is only valid in théNPUT, FOR-
WARD andOUTPUT chains, and usatefined chains which are only called from those chains. The fol-
lowing option controls the nature of the error packet returned:

——reject-with type

The type gien can beicmp—net—-unreachable icmp—host-unreachable icmp—port-unreach-
able, icmp-proto—unreachable icmp—-net—prohibited, icmp-host-prohibited or
icmp—admin—prohibited (*) which return the appropriate ICMP error messguarttunreach-
ableis the de&ult). Theoptiontcp—resetcan be used on rules which only match the TCP proto-
col: this causes a TCP RST patko be sent back. This is mainly useful for blockidgnt
(113/tcp) probes which frequently occur when sending mail toelrokail hosts (which an’t
accept your mail otherwise).

(*) Using icmp—admin—prohibited witheéknels that do not support it will result in a plain DROP instead of
REJECT

SAME
Similar to SMT/DNAT depending on chain: it tek a range of addresses (‘——to 1.2.3.4-1.2.3.7’) and
gives a dient the same source-/destination-address for each connection.

iptables 1.4.10 27

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

N.B.: The DMNAT target's——persistentoption replaced the SAME target.

——to ipaddf—-ipaddr]
Addresses to map source to. May be specified more than once for multiple ranges.

——nodst
Don't use the destination-ip in the calculations when selecting thesmece-ip
——random
Port mapping will be forcibly randomized tocéd attacks based on port prediction (kernel >=
2.6.21).
SECMARK

This is used to set the security magtue associated with the packet for use by security subsystems such as
SELinux. Itis only valid in themangletable. The mark is 32 bits wide.

——selctxsecurity_context

SET
This modules adds and/or deletes entries from IP sets which can be defined by ipset(8).

——add-setsetname flagflag...]
add the address(es)/port(s) of the packet to the sets

——del-setsetname flggflag...]
delete the address(es)/port(s) of the packet from the sets

where flags arsrc and/ordst specifications and there can be no more than six of them.

Use of -j SET requires that ipsetrkel support is provided. As standard kernels do not ship this cufrently
the ipset or Xtables-addons package needs to be installed.

SNAT
This target is only alid in thenat table, in thePOSTROUTING chain. Itspecifies that the source address
of the packt should be modified (and all future packets in this connection will also be mangled), and rules
should cease beinga@mined. Itakes one type of option:

——to—-sourceipadd—-ipaddr[:port—port]]
which can specify a single wesource IP address, an inclusirange of IP addresses, and option-
ally, a port range (which is only valid if the rule also specifistcp or —p udp). If no port range
is specified, then source ports hel612 will be mapped to other ports bel®12: those between
512 and 1023 incluge will be mapped to ports belo1024, and other ports will be mapped to
1024 or abwe. Where possible, no port alteration will

In Kernels up to 2.6.10, you can addeal ——to—source options.oF those kernels, if you specify

more than one source address, either via an address range or multiple ——to—source options, a sim-
ple round-robin (one after another in cycle) takes place between these addressesernels

(>= 2.6.11-rc1) dor’havethe ability to NAT to multiple ranges anymore.

——random
If option ——random is used then port mapping will be randomized (kernel >= 2.6.21).

——persistent
Gives a dient the same source-/destination-address for each connection. This supersedes the
SAME target. Support for persistent mappingsvalable from 2.6.29-rc2.

TCPMSS
This target allas to alter the MSS value of TCP SYN packets, to control the maximum size for that con-
nection (usually limiting it to your outgoing intades MTU minus 40 for IPv4 or 60 for IPv6, respec-
tively). Of course, it can only be used in conjunction wightcp.

This target is used tovercome criminally braindead ISPs or servers which block "ICMP Fragmentation
Needed" or "ICMPV6 &cket Too Big" packts. Thesymptoms of this problem are thateg/thing works
fine from your Linux firgvall/router, but machines behind it canvee exchange large packets:

iptables 1.4.10 28

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

1) Web browsers connect, then hang with no data vedei
2) Small mail works fine, but large emails hang.
3) ssh works fine, but scp hangs after initial handshaking.
Workaround: actiate this option and add a rule to youriell configuration like:

iptables -t mangle —A FORARD —p tcp ——tcp—flags SYN,RST SYN
—-j TCPMSS —-clamp-mss—to—pmtu

——set-mssvalue
Explicitly sets MSS option to specified value. If the MSS of the packet is already loweathgn
it will not be increased (from Linux 2.6.25 onwards) ¥oid more problems with hosts relying on
a proper MSS.

——clamp-mss-to—pmtu
Automatically clamp MSS value to (path_MTU - 40 for IPv4; —60 for IPVR)is may not func-
tion as desired where asymmetric routes with differing path MTU exist —etinelkuses the path
MTU which it would use to send packets from itself to the source and destination IP addresses.
Prior to Linux 2.6.25, only the path MTU to the destination IP addresscensidered by this
option; subsequent kernels also consider the path MTU to the source IP address.

These options are mutually exchsi

TCPOPTSTRIP
This target will strip TCP options foh TCP packet. (It will actually replace them by NO-OPs.) As such,
you will need to add thep tcp parameters.
——strip—options optior,option..]
Strip the gven option(s). The options may be specified by TCP option number or by symbolic
name. The list of recognized options can be obtained by calling iptablesjWi@POPTSTRIP
-h.
TEE
The TEE target will clone a padait and redirect this clone to another machine oridt& network seg-
ment. In other words, the nexthop must be the target, or you wélthaonfigure the nexthop to forward it
further if so desired.

——gatewayipaddr
Send the cloned packet to the host reachable at tee B address. Usef 0.0.0.0 (for IPv4
packets) or :: (IPv6) is walid.

To forward all incoming traffic on ethO to an Network Layer logging box:
-t mangle —~A PREROUTING =i ethO —j TEE ——gaty 2001:db8::1

TOS
This module sets theype of Service field in the IPv4 header (including the "precedence" bits) or the Prior
ity field in the IPv6 headeNote that DS shares the same bits as DSCP and ECN. The TOS target is only
valid in themangletable.

——set-tosvalug/mask
Zeroes out the bitsggn by maskand XORsvalueinto the TOS/Priority field. Ifnaskis omitted,
OxFF is assumed.

——set-tossymbol
You can specify a symbolic name when using ti@STtarget for IPv4. It implies a mask of OxFF
The list of recognized TOS names can be obtained by calling iptablesjwi@s -h.

The following mnemonics arevalable:

——and-tosbits
Binary AND the TOS alue withbits. (Mnemonic for--set-tos Ohvbits whereinvbits is the
binary nggation of bits.)

iptables 1.4.10 29

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

——or-tos bits
Binary OR the TOS value withits. (Mnemonic for-—set-tosbitg/bits.)

——xor-tos bits
Binary XOR the TOS value withits. (Mnemonic for-—set-toshits/0.)

TPROXY
This target is only valid in thenangle table, in thePREROUTING chain and user-defined chains which
are only called from this chain. It redirects the pddk a local socket without changing the packet header
in ary way. It can also change the marklue which can then be used in advanced routing rules. dé tak
three options:

—-on-port port
This specifies a destination port to use. It is a required option, 0 meansvtdesti@ation port is
the same as the original. This is only valid if the rule also speeliésp or —p udp.

——on-ip address
This specifies a destination address to use. By default the address is the IP address of the incoming
interface. This is only valid if the rule also specifigstcp or —p udp.

——tproxy—mark valug/mask
Marks packets with the ggn value/mask. The fwmarkalue set here can be used by atbed
routing. (Required for transparent proxying to work: otherwise theseetsaghll get forvarded,
which is probably not what you want.)

TRACE
This target marks packes so that tieenlel will log every rule which match the packets as thoseense the
tables, chains, rules. (The ipt_LOG or ip6t_LOG module is required for the logging.) The packets are
logged with the string prefix: "TRACE: tablename:chainname:type:rulenum " where type can be "rule” for
plain rule, "return” for implicit rule at the end of a user defined chain and yp&ticthe polig/ of the huilt
in chains.
It can only be used in tlraw table.

TTL

This is used to modify the IPv4 TTL header field. The TTL field determinasnhery hops (routers) a
packet can trzerse until its ime to live is exceeded.

Setting or incrementing the TTL field can potentially be very dangerous, so it showditedaat ag
cost.

Don’t ever set or increment the value on packets that lee your local network! mangle table.

——ttl-set value
Set the TTL value to ‘value’.

——ttl-dec value
Decrement the TTL value ‘value’ times.

——ttl-inc value
Increment the TTL value ‘value’ times.

ULOG
This target preides userspace logging of matching petsk Wherthis target is set for a rule, the Linux
kernel will multicast this packet throughreetlink soclet. One or more userspace processes may then sub-
scribe to various multicast groups and reedhie packts. Like LOG, this is a "non-terminating target", i.e.
rule traversal continues at the next rule.

—-ulog—-nlgroup nigroup
This specifies the netlink group (1-32) to which the packet is sent. Default value is 1.
——ulog—prefix prefix
Prefix log messages with the specified prefix; up to 32 characters long, and useful for distinguish-
ing messages in the logs.

iptables 1.4.10 30

IPTABLES(8) iptables 1.4.10 IRPNBLES(8)

—-ulog—-cprangesize
Number of bytes to be copied to userspatezalue of O alvays copies the entire pagk regard-
less of its size. Default is 0.

——ulog—qthresholdsize
Number of packet to queue insiderkel. Settinghis value to, e.g. 10 accumulates ten ptek
inside the kernel and transmits them as one netlink multipart message to usebgfao#.is 1
(for backwards compatibility).

DIAGNOSTICS
Various error messages are printed to standard. efitoe exit code is O for correct functioningerrors
which appear to be caused byalid or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.

BUGS
Bugs? Whas this? ;-) Well, you might want to ke a bok at http://bugzilla.netfilter.org/

COMPAT IBILITY WITH IPCHAINS
This iptables is very similar to ipchains by Rusty Russell. The main difference is that the ¢N&DT
andOUTPUT are only traersed for packets coming into the local host and originating from the local host
respectrely. Hence gery packet only passes through one of the three chakteft loopback trét,
which involves both INPUT and OUTPUT chains); previously a fanded packet would pass through all
three.

The other main difference is thait refers to the input intemte;—o refers to the output interface, and both
are ailable for packets entering ti®ORWARD chain.

The various forms of AT havebeen separated ougitables is a pure packet filter when using theaigf
filter’ table, with optional extension modules. This should simplify much of the previous confus#on o
the combination of IP masquerading and packet filtering segiopsty. So the following options are han-
dled differently:
-j MASQ
-M =S
-M -L
There are seral other changes in iptables.

SEE ALSO
iptables—sare(8), iptables-restorg8), ip6tableg8), ip6tables—sae(8), ip6tables—restord8), libipq (3).

The packt-filtering-HOWTO details iptables usage for packet filtering, ti STNTHOWTO details NAT, the
netfilter-extensions-HOWD details the extensions that are not in the standard distnh and the net-
filter-hacking-HOW™ details the netfilter internals.

Seehttp://www.netfilter.org/ .

AUTHORS
Rusty Russell originally wrote iptables, in early consultation with Michael Neuling.

Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic packet selectiomohlamepta-
bles, then wrote the mangle table, the owner match, the mafkastdfran around doing cool stefery-
where.

James Morris wrote the TOS target, and tos match.
Jozsef Kadlecsik wrote the REJECT target.

Harald Welte wrote the ULOG and NFQUEUE target, the tibiptc, as well as the TTL, DSCECN
matches and targets.

The Netfilter Core Team is: Marc Bouchbfartin Josefsson, Yasuyuki Kozakai, Jozsef Kadlecsik;idk
McHardy, James Morris, Pablo Neira Ayuso, Harald Welte and Rusty Russell.

Man page originally written by HeevBychenne <rv@wallfire.org>.

iptables 1.4.10 31

IPTABLES-SA/E(8) IPTABLES-SAVE(S)

NAME

iptables-sae — dump iptables rules to stdout
SYNOPSIS

iptables—sare [-M modprobe] [—c] [t tabl€]
DESCRIPTION

iptables-sare is used to dump the contents of an IP Table in easily parseable format to STD€2U1O-
redirection provided by your shell to write to a file.
—M modprobe_program
Specify the path to the modprobe program. By default, iptables\sidl inspect /proc/sys/r-
nel/modprobe to determine theeeutables path.

-c, ——counters
include the current values of all packet and byte counters in the output

—t, ——table tablename
restrict output to only one table. If not specified, output includevailahble tables.

BUGS
None known as of iptables-1.2.1 release

AUTHOR
Harald Welte <laforge@gnumonks.org>

SEE ALSO
iptables-restorg8), iptables(8)

The iptables-H@/TO, which details more iptables usage, t®TRHOWTO, which details T, and the
neftfilter-hacking-HOW®D which details the internals.

Jan 04, 2001 1

IPTABLES-RESTORE(8) IPABLES-RESTORE(8)

NAME

iptables-restore — Restore IP Tables
SYNOPSIS

iptables-restore[—c] [-n]
DESCRIPTION

iptables-restoreis used to restore IPables from data specified on STDIN. Use 1/O redirectiowigeal
by your shell to read from a file

-c, ——counters
restore the values of all packet and byte counters

-n, ——noflush
don't flush the previous contents of the table. If not specifi¢ables-restoreflushes (deletes) all
previous contents of the respeetiP Table.

BUGS
None known as of iptables-1.2.1 release

AUTHOR
Harald Welte <laforge@gnumonks.org>

SEE ALSO
iptables—save(8), iptables(8)

The iptables-H@/TO, which details more iptables usage, tiSTRHOWTO, which details KT, and the
netfilter-hacking-HOW®D which details the internals.

Jan 04, 2001 1

	What is IPTables
	Fundamental Concepts
	Chains
	Tables
	NAT
	Filtering
	Mangling

	Packet Flow
	Rules
	Matches
	Targets

	Configuring and Managing iptables
	Starting and Stopping
	IPTables List Command
	IP Tables Flush Command
	IP Tables Policy Command
	Writing Rules
	Leveraging the connection state
	Blocking packets from specific sources
	Accepting packets of desired type
	Saving/Restoring Rules to/from files
	Custom (User-defined) Chains
	Logging
	IPTables matches
	Implicit matches
	Explicit matches

	Some recommended Best Practices for iptables

	Applications
	Some specific techniques and their configuration
	Port Knocking
	Implementation using custom-chains
	Using the Portknock0 project iptables module

	Rate Limiting
	Protecting against ping flood attacks

	Connection Limiting
	Limiting the number of SSH connections from a host (in parallel)
	Bruteforce attack protection

	iptables at IIIT-H
	Suggestions for Optimization and Improvement
	Optimizing iptables by creating user-defined chains
	Reordering rules based on counters
	Logging and Dropping/Accepting with a single rule

	Man Pages

