
Buffered input/output
Un-buffered input/output

File input/output
Software Technologies - Lecture 2

Saurabh Barjatiya

International Institute Of Information Technology, Hyderabad

28 December, 2009

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Contents

1 Buffered input/output
Introduction
Common functions

2 Un-buffered input/output
Introduction
Common functions

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Introduction

Buffered input/output is very useful when programs input/output
block size is very small in comparison to Operating Systems block
size. Normally operating systems would read / write data in blocks
(say 4KB). In case the programs reads or writes only one record
(about 100 bytes) at a time, then about 40 system calls are made
to read / write 4KB of data, which could have been done in one
system call. In such cases Buffered I/O is very useful to avoid
penalty incurred in context switch which happens when we invoke
system calls.

Also functions used in buffered input/output are very similar to
common functions used in console input/output making them very
easy and intuitive to learn and use.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fopen

Header file: stdio.h
Declaration:
FILE *fopen(const char *path, const char *mode);

Here, path can be normal C-style null terminated string containing
either relative or absolute path and mode can be one of ‘r’, ‘r+’,
‘w’, ‘w+’, ‘a’ and ‘a+’.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fprintf

Header file: stdio.h
Declaration:
int fprintf(FILE *stream, const char *format, ...);

Here ‘stream’ is FILE pointer returned by call to fopen function.
We can also use the default streams stdout and stderr apart from
streams that we open. Format specifier and arguments are exactly
same as normal ‘printf’ function.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fscanf

Header file: stdio.h
Declaration:
int fscanf(FILE *stream, const char *format, ...);

Here ‘stream’ is FILE pointer returned by call to fopen function.
We can also use the default stream stdin apart from streams that
we open. Format specifier and arguments are exactly same as
normal ‘scanf’ function.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fclose

Header file: stdio.h
Declaration:
int fclose(FILE *fp);

Here ‘fp’ is FILE pointer returned by call to fopen function. It is
important to close files opened for writing so that file buffers which
are not yet flushed / written gets written before the program ends.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fflush

Header file: stdio.h
Declaration:
int fflush(FILE *stream);

Here ‘stream’ is FILE pointer returned by call to fopen function.
This function is important if we want to ensure that all user-space
buffers are synced to kernel buffers for the output stream. This
helps in avoiding data-loss when using buffered I/O and program
terminates unexpectedly (due to signals).

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

fseek

Header file: stdio.h
Declaration:
int fseek(FILE *stream, long offset, int whence);

Here ‘stream’ is FILE pointer returned by call to fopen function.
Here offset is long value and hence this function is useful only
when we are dealing with small files (size ¡ 2 GB). For files greater
than 2 GB we have to use 64-bit versions of these functions.

‘whence’ can be ‘SEEK SET’, ‘SEEK CUR’ or ‘SEEK END’ to
indicate that offset is with respect to start of file, current position
in file or end of file.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Contents

1 Buffered input/output
Introduction
Common functions

2 Un-buffered input/output
Introduction
Common functions

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Introduction

Un-buffered input/output is very useful when programs
input/output block size is almost equal or larger in comparison to
Operating Systems block size. By using unbuffered input/ouput we
avoid one more layer of buffering which is not useful when amount
of data to be transferred is large.

Un-buffered input/output is very useful when progrmas are piped
and output of one program is used as input in other program. In
such cases buffering may cause delays or even halt the programs
breaking the entire functionality. These functions are also useful in
binary input/output.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

open

Header file: sys/types.h, sys/stat.h, fcntl.h
Declaration:
int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode t

mode);

‘open’ function call on successful completion should return a
non-negative file descriptor to file. ‘flags’ must contain one of the
access modes ‘O RDONLY’, ‘O WRONLY’, or ‘O RDWR’.
Optionally ‘flags’ can also contain creation flags like ‘O CREAT’,
‘O EXCL’, ‘O NOCTTY’, and ‘O TRUNC’. ‘mode’ can be used to
set permissions on newly created files.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

read

Header file: unistd.h
Declaration:
ssize t read(int fd, void *buf, size t count);

‘read’ function call on successful completion returns number of
bytes read from given file descriptor. The number of bytes can be
zero or at most equal to count. The bytes read are stored in array
buf and hence buf must be of at least count bytes long. The buf
array is not null terminated, so if it ASCII input/output then
programmer must null terminate buffer before using it as normal C
style string.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

write

Header file: unistd.h
Declaration:
ssize t write(int fd, const void *buf, size t count);

‘write’ function call on successful completion returns number of
bytes written into file descriptor. The bytes to write are read from
‘buf’ and at most count bytes are written. Programmer must
ensure that ‘buf’ is at least count bytes long to avoid writing of
junk data into file-descriptor and to avoid segmentation faults.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

close

Header file: unistd.h
Declaration:
int close(int fd);

‘close’ function calls simply closes the stream associated with given
file descriptor.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad



Buffered input/output
Un-buffered input/output

Introduction
Common functions

Common functions

lseek

Header file: sys/types.h, unistd.h
Declaration:
off t lseek(int fildes, off t offset, int whence);

‘lseek’ function calls helps in jumping to specified location in
stream associated with given file descriptor. Here ‘fildes’ is file
descriptor of stream in which we want to seek location, ‘offset’ is
offset with respect to ‘whence’ and ‘whence’ is one of
‘SEEK SET’, ‘SEEK CUR’ and ‘SEEK END’.

Saurabh Barjatiya File input/output Software Technologies - Lecture 2 IIIT Hyderabad


	Buffered input/output
	Introduction
	Common functions

	Un-buffered input/output
	Introduction
	Common functions


