Saurabh Barjatiya

Blocking and Non-blocking 10
Software Technologies - Lecture 7

Saurabh Barjatiya
International Institute Of Information Technology, Hyderabad

2 March, 2010

Blocking and Non-blocking 10 Software Technologies - Lecture 7

INT Hyderabad



Blocking 1/0 Introduction
|

F

Contents

© Blocking 1/0
@ Introduction
@ poll
@ select

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Blocking 1/0 Introduction
oll

Introduction

@ By default read() / write() functions are blocking in nature,
that is if there is no input and EOF is not reached then they
wait till some input arrives or stream is closed (ie EOF is
reached).

@ Blocking is not same as buffering, even if one byte of input is
available read() function would return. Buffering waits till the

buffer is full or some special sequence like ‘\r\n' or just ‘\n' is
read.

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Blocking 1/0 Introduction

poll
select

@ We can use poll() when using Blocking 1/O to know whether
the particular function call will block or not.

@ poll() can also be used to check whether the connection is
closed (Hangup) or is it still running. For this purpose we
have to attempt a read/write on socket before we check
whether it is closed or not.

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Blocking 1/0 Introduction
poll
select

@ We can use select() if we are waiting for input on multiple file
descriptors.

@ We can choose whether we are waiting for reading or writing
or exceptions.

@ select() and poll() are not only for network, they can be used
on normal file descriptors including 0 (stdin), 1 (stdout), 2
(stderr).

@ We can specify very precise time to wait for using select()
calls.

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Non-Blocking 1/0 Introduction

Contents

© Non-Blocking 1/0
@ Introduction

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Non-Blocking 1/0 Introduction

Introduction

@ Using fentl() we can change the file descriptor options so that
read() and write() on it do not block.

@ In such case -1 is returned if there is no data too or if error
occurs and 0 if EOF is reached.

@ To differentiate between error and no data, read ‘errno’
variable. If its value is EWOULDAGAIN, then it means -1 is
returned to indicate no data, else some error occurred.

@ Setting O_.NONBLOCK affects accept() and connect()
functions calls too.

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Introduction
Asynchronous 1/0

Contents

© Asynchronous 1/0
@ Introduction

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



Introduction
Asynchronous 1/0

Introduction

We can also perform |/O asynchronously. This requires use of
signals. We have to enable asynchronous I/0O (O_ASYNC) on file
descriptor using fentl(). We also have to use fctnl() to make
current process owner of file descriptor, so that signals are
delievered to current process (F_.SETOWN) .

We have to use signal handling for caching signals SIGIO and
SIGHUP. We also have to use ioctl() to enable asynchronous I/O
and signals on file descriptor.

The program which uses above process is very efficient as it does
network/file 1/O when it can and at other times it can do other

processing. Also all this is done without polling and without usig
multi-threading or multi-processing. -

Saurabh Barjatiya Blocking and Non-blocking 10 Software Technologies - Lecture 7 INT Hyderabad



	Blocking I/O
	Introduction
	poll
	select

	Non-Blocking I/O
	Introduction

	Asynchronous I/O
	Introduction


