Network Tools

Saurabh Barjatiya

2012-03-19 Mon

Contents
(1 Port scanning (nmap)| 2
2 Capturing packets at command line (tcpdump)| 3
2.1 About tepdump|o 3
2.2 Useful command line optiong| 4
[2.3 tcpdump filter format|.o oL 5
[3 Capturing and analyzing packets (wireshark)| 7
[4 Host based IPS / IDS (snort)| 8
4.1 Snort modes. oL 8
[4.2 Configuring snort rules| 8
[4.2.1 Snort rulesyntax|{ 8
[4.2.2 Example snort rules|, 9
[4.2.3 Installing snort| 9
[5 Password cracking using bruteforce, dictionary attacks (john)| 10
6_clamav 10
[avast] 11

Note: Commands and configuration files mentioned below are with re-

spect to Cent-OS / Fedora / Red-hat based systems. Same content should
apply to other distributions with minor changes in command options, loca-
tion of configuration files, etc.

1 Port scanning (nmap)

It is always good to verify after proper firewall (such as iptables) configu-
ration has been done that only desired services are accessible from external
users. An easy way to accomplish this is to port scan protected server from
prospective client machines / potential attackers to check which ports are
open. One very versatile port scanning tool available for Linux (also works
equally well with Windows) is nmap. nmap is well documented and we can
use:

nmap

command without arguments to see various options supported by nmap and
try each of them. man nmap can be used to get detailed information on each
of the options available.

Some important nmap command line options are explained below:

Option Description

-sP Ping scan. Only determine whether host is online or not.
Do not scan ports. This is very useful to find out which
machines are on in given IP range.

-p Scan only these ports. Useful to check for a particular
service on given range of IPs

-n Do not do DNS resolution. Very useful for passive information
gathering.

-85 TCP SYN Scan

-sA TCP ACK Scan

-sT TCP Connect Scan

-sU UDP Scan

-sV Probe open ports to determine service/version information

-0 Enable OS detection

-f [-mtu] Fragment packets optionally with given MTU

-D Use given set, of decoys before scanning target with our
address

-S <IP> Use spoofed source address

-e Use specified interface

—spoof-mac Spoof MAC address

—ttl Send packets with given TTL

—badsum Send packets with bad checksum

-v Increase verbosity. Can be used twice for greater effect

—open Only show open (or possibly open) ports

-6 Enable IPv6 scanning

-A Enable OS detection, service detection and traceroute

2 Capturing packets at command line (tcpdump)

2.1 About tcpdump

tcpdump is a very powerful command-line based packet capturing tool. It
can be used to display information about captured packets on screen or
capture packets in pcap file format for later analysis. tcpdump has very
small footprint and can be used to capture packets even when there is heavy
network I/0. ‘tcpdump’ accepts filters in kernel filter format so that only
the packets we are interested in get captured very efficiently. tcpdump uses
libpcap for its packet capture operations.

2.2 Useful command line options

Some very useful command line options supported by tcpdump are:

Option Description

-C Stop capturing after count number of packets have been captured

-C Do not store more then this many MBs (1,000,000 bytes) in single
capture file. When file size exceeds it starts new file with suffixes
.1, .2 etc. added between consecutive files.

-D List interfaces available for capturing along with description.

-i interface name or number (as shown by -D) on which packets should
be captured. Note by default it will choose lowest numbered interface
which is up and not a loopback device.

-n Do not convert IP address to hostnames via reverse DNS lookup.
This option is very important if we are capturing packets on
heavy traffic links to avoid too many DNS lookups which
may affect packet capture or generate significant DNS traffic.

-nn If performance is issue or port numbers are preferred over
service names then we can use -nn to avoid converting of port
numbers to service names, like 22 to ssh or 80 to http.

This does not generates any additional traffic as mostly
file /etc/services would be used to convert port numbers
to service names, but can require some small processing.

-p Do not put interface in promiscuous mode. Note that interface
can already be in promiscuous mode and in that case tcpdump
would end up capturing packets meant for other hosts in hub
like networks.

-r <file> Read packets from given file and not from live interface.

-s <size> Capture only first specified number of bytes of each packets.
This is useful if we are interested only in protocol
(TCP/IP/UDP, etc.) headers and not in application payload.
To capture entire packet the size or snaplen can be
specified as ‘0’

-V Generate verbose output. We can use -vv or -vvv to
increase verbosity level
-q Generate quieter (lesser) output
-w <file> Write output to file.
-A Print information contained in packets in ASCII format
-X Print information contained in packets in hexadecimal format.

Note:

e A pseudo-interface named all is also shown among with other interfaces.
But capturing on any interface has limitation that it can be done only
in non-promiscuous mode. We cant capture packets on any interface
in promiscuous mode.

e If we want to capture packets only meant for current host then we can
use filter ‘ether host <host-mac-address> or ether broadcast’. This
would work even if interface is in promiscuous mode.

e We can specify filename as ‘-’ to -r or -w options so that input is taken
from stdio or output is written to stdout.

2.3 tcpdump filter format

We can specify filters (conditions which must be satisfied) for the packets to
be captured. Various filter options are:

Expression

Meaning

host <ip-address>>

Only packets to or from the specified
TP address are captured

src host <ip-address>

Only packets with matching source 1P
address are captured

dst host <ip-address>

Only packets with matching destination
TP address are captured

port <number>

Only packets with source/destination
TCP /UDP port specified as argument are captured.

src port <number>

Only packets with source TCP/UDP port
specified as argument are captured.

dst port <number>

Only packets with destination TCP/UDP
port specified as argument are captured.

<protocol>

Only packets of mentioned protocol
will be captured. Accepted protocol names
are ip, arp, rarp, tcp, udp, wlan, ip6 and ether.

and, or, not

We can combine multiple expressions
with and, or, not

ether host <mac-address>

Allow only with matching source or
destination mac address.

ether src <mac-address>

Capture packets only with specified
source mac address

ether dst <mac-address>

Capture packets only with specified
destination mac address

gateway <host>

Packet was sent or received via host as

gateway. Note for this the information about

host’s MAC address must be present in /etc/ethers’
file. Also host must be either resolvable by

DNS or its IP information should be mentioned

in ‘/etc/hosts’ file.

net <network-number>

Captures packets only when source/destination
IP belongs to given network.

net <net> mask <netmask>

Packet matches network with specified netmask
specified in dotted decimal format

net <net>/<len>

Packet matches network with specified netmask
using bit-mask length notation.

portrange <portl>-<port2>

Port number lies within given range.

src portrange <portl>-<port2>

Source port lies within given range

dst portrange <portl>-<port2>

Capture if destination port lies
within given range

less <length>

Gapture if packet length is less
then specified length

greater <length>

Capture if packet length is greater
then specified length

ether broadcast

Capture if ethernet broadcast packet

ip broadcast

Capture if IP broadcast packet

ether multicast

Capture if ethernet multicast packet

ip multicast

Capture if IP multicast packet

vlan <vlan-id>

Capture if the packet is an IEEE

802.1Q VLAN packet. If <vlanjg> is

specified, only true if the packet has the
specified vlan;q. Note that the first vlan
keyword encountered in expression changes
the decoding offsets for the remainder of
expression on the assumption that the packet
is a VLAN packet. The vlan |vlan;q| expression
may be used more than once, to filter on
VLAN hierarchies. Each use of that expression
increments the filter offsets by 4. Read

man page to understand this option properly

Note:

e We can combine protocol (ip, tcp, etc.), direction (src, dst) and port

in single expressions like ‘tcp dst port 80’

e There is also very powerful indexing operation to access byte at specific
location in packet which then can be compared using <, <, >=, <=,

=, 1=, &, | etc. C language operators with other byte or decimal

constant. Complete information on this can be found in man page.

Additional information (including above mentioned informa-

tion) can be found at tcpdump man page

3 Capturing and analyzing packets (wireshark)

wireshark is packet capturing and analysis tool with GUI interface. Wire-
shark is very powerful network forensic tool which understands many diverse
protocols which are used over Internet. Wireshark also provides statistics,
Protocol specific details, display filters, option for TCP reassembly, etc. mak-

ing it very useful and unique.

One needs administrator or root privileges to run wireshark. It is very
intuitive to use and one can learn considerable usage of wireshark by playing

around with it for few hours.

4 Host based IPS / IDS (snort)

snort is a very powerful host based IPS / IDS with very powerful and flexible
rule syntax. It has many different configuration options and we can get good
initial IPS ruleset to be used with snort from web.

4.1 Snort modes

Snort can be used in three different modes:

e Sniffing - -v - In this mode snort just sniffs the packets and displays
relevant information on screen.

e Logging - -1 - In this mode snort logs packets in log files. We can use
these log files for analysis later on. We can also use -b’ option to log
in binary format (libpcap) format which can be used by wireshark /
tepdump ete.

e Network Intrusion Detection System (NIDS) - -¢ {snort-configuration-
file} - In this mode snort uses set of rules and inspects packets for
matching rules and takes action as specified in the rules.

We can combine more than one mode together to do NIDS, logging, etc.
together.
4.2 Configuring snort rules
Following steps can be used for configuring or testing very basic snort rules:
e Create file /etc/snort/rules/local.rules using ‘touch /etc/snort /rules/local.rules’
e Infile ‘/etc/snort/snort.conf’ uncomment line ‘include SRULEpaTH /local.rules’

e Now we can put simple rules in local.rules file and test them with snort.
4.2.1 Snort rule syntax
Snort rules are in format
action protocol src_ip src_port direction dst_ip dst_port (rule options)

Note:

e Most snort rules are written in single line. We can write rules that span

multiple lines by ending all but-last line with a backslash (‘) character.

e [t is not necessary for rules to have rule options, but most rules would
have options to make them useful.

Sample rule is:
alert tcp any any <> 10.100.1.107 80 (flags:S; msg: "HTTP access on vm7"; sid:1000001;

Here types of action can be alert, log, pass, activate, drop, reject, sdrop
etc. Protocol can be IP, ICMP, TCP, UDP, etc. Source or Destination
can be IP, IP/mask, Groups of IP/Mask in square brackets, Negation of
IP, Negation of groups of IP etc. Port can be single port, range of port or
group of ports. Direction can be -> or <> to indicate unidirectional or bi-
directional connection. Snort has lot of rule options. One can refer to snort
users manual hosted at http://www.snort.org/docs to get documentation /
examples on various options available.

4.2.2 Example snort rules

Some example rules are:

alert tcp any any -> any 80 (content:"BOB"; gid:1000001; sid:1; rev:1;)
alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon;)
alert tcp any any -> any 80 (msg:"WEB-MISC phf attempt"; flags:A+; \
content:"/cgi-bin/phf"; priority:10;)
alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize:>128; classtype:attempted-admin; priority:10);
alert tcp any any -> any any (content:"ABC"; content:"DEF"; distance:1;)
alert tcp any any -> any any (content:"ABC"; content:"EFG"; within:10;)
alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_client_body;)

4.2.3 Installing snort

Installing snort on stable distributions like Cent-OS which have very old
and stable versions of most libraries is not easy as snort developers use
many latest libraries in snort development. Hence for snort beginners it is
best to try snort on latest distribution of Fedora or Ubuntu on which pre-
built binaries of latest snort version can be installed and used without any
problem.

http://www.snort.org/docs

5 Password cracking using bruteforce, dictionary
attacks (john)

john is very advanced password cracking software which can perform sophis-
ticated bruteforce attacks / dictionary based attacks on given set of password
hashes. Multiple john sessions can be run on same system, each of which can
be paused / resumed as and when required. John can be used to crack both
Windows (NTLM) or Linux (mdb5crypt) based hashes. To crack Windows
passwords john can be used along with BkHive and Samdump2. For cracking
Linux passwords john can be used with unshadow.
To crack Linux passwords with john use:

e unshadow /etc/passwd /etc/shadow > hashes.txt

e john hashes.txt

6 clamav

clamav is one of free and famous anti-viruses available for Linux distribu-
tions. Please note that although clamav is available in Linux, its primary
purpsoe is not to detect Linux viruses. Even in Linux clamav is used to scan
files and folders for Windows viruses. Linux is virtually virus-free. There
are root-kits but clamav (as far as I know) does not scans for root-kits.

To scan a folder using clamscan we can use:

clamscan -ir <dir_name>

It should be noted that clamav also supports tools / daemons like fresh-
clam, clamd etc. which periodically update clamav database from closest
mirror or provide clamav daemons for protecting from viruses sent via email.
Clamav daemon can be configured as milter (mail filter) in sendmail etc.
SMTP servers to check incoming emails for viruses before they are sent to
user Inbox.

Clamav daemon also supports options for listening on a port for receiving
traffic to be scanned. If traffic received by daemon is malicious traffic then
it indicates so by sending different type of response then usual on the same
socket. Hence we can use clamav daemon to scan network traffic of home
grown network applications too.

10

7 avast

I have not used avast on Linux platform at all. It should be very similar
to clamav described above. Participants are encouraged to try avast to
learn how to use it and to determine whether it has any useful features when

compared to clamav.

11

	Port scanning (nmap)
	Capturing packets at command line (tcpdump)
	About tcpdump
	Useful command line options
	tcpdump filter format

	Capturing and analyzing packets (wireshark)
	Host based IPS / IDS (snort)
	Snort modes
	Configuring snort rules
	Snort rule syntax
	Example snort rules
	Installing snort

	Password cracking using bruteforce, dictionary attacks (john)
	clamav
	avast

